

Footprint Optimization

Eric Debeau (Orange), Adolfo Perez-Duran (Arm), Mike Elliott (Amdocs)
December 11, 2018

ONAP Resource Requirements

• 240+ Pods

• 192GB memory for full
deployment

• 112 CPUs

• 1 hour+ startup time

• 60GB+ (offline installer - Beijing)

Casablanca largest release yet

m
e

m
o
ry

 (
G

B
)

Why do we care?

• Production-grade Deployments
• Minimize time to instantiate when healing, scaling or migrating

components

• Limit impact of outages and upgrades

• Lower infrastructure costs

• Optimal use of resources in shared environments (i.e. Integration)

• Improved build times

• Fast deploy/update lends itself to automated integration tests

• Shorter develop-test-validate cycles accelerate innovation

What is being done?

•Application Resource Optimizations

•Normative Container Base Images

•Resource Limits

•Deployment Options

•Database Consolidation

Application Resource Optimizations

• A lot of containers rely on Java code
- JVM size has a big impact on memory footprint

- No sharing JVM memory between containers

• Heap tuning for Java-based containers is possible
- -Xxms: for minimal heap size

- -Xxmx: for maximal heap size

• Default Heap size defined can be defined in Helm Charts
- Defined for most of containers

- Some Heap size still hard-coded in DockerFile scripts and can not be optimized for
small deployments

Application Resource Optimizations: JVM configuration in
Helm Charts

config:

 cassandraUsername: root

 cassandraPassword: Aa123456

 cassandraJvmOpts: -Xmx2536m -Xms2536m

config:

 javaOptions: "-Xdebug … -Xmx1536m -Xms1536m"

 cassandraSslEnabled: "false"

config:

 heap:

 max: 512M

 min: 100M

 jvmOpts: -Dcassandra.consistent.rangemovement=false

Some Examples used for

Cassandra

Application Resource Optimizations: recos

• Use JVM options in Helm Chart
- To be used in environment variables when Running the Docker container

- Can be overridden during deployment (e.g. using ENV variables)

- Avoid conflict with resource limits
• Java Memory Size = Heap size + Compiled code + Threads/GC data

• Resource limit request to be aligned with these constraints

• Use Java 10+
- Better integration with Docker

• Prefer Java framework springboot to reduce the memory

Application Resource Optimizations: define optional sub-
component

• Every project embeds an increased number of containers
- For some project, all sub-components are not mandatory to run a dedicated

use-case

• Better documentation required to define the role of every container
- Mandatory to run basic feature

• Including all sub-components during the installation phase

- Optional to run optional feature

Effect of Large Container Images

Images
Large

Build time
Long

Deployability
Low

ONAP Normative Container Base Images

Reduce
Footprint

Support
Multi-CPU

Architecture

Improve
Deployability

Alpine Base Images

Reduce
Footprint

Support
Multi-CPU

Architecture

Improve
Deployability

Effect of Migrating to ONAP Normative Images

0

200

400

600

800

1000

1200

Ubuntu Alpine

H
A

S
IM

A
G

E
(M

B
)

BASE IMAGE

OOF/HAS Base Image Migration

Reduction in

image size 64%

FROM python:2.7-alpine

.

RUN apk add --no-cache curl \

 gcc \

 libffi-dev \

 linux-headers \

 musl-dev \

 git \

 libxml2-dev \

 libxslt-dev \

 openssl-dev \

 py-setuptools \

 unzip \

 wget \

 xvfb

Typical Changes to Dockerfile

2. Package

manager

1. Base image

3. Libraries

What to expect

CIA Resources

ONAP Normative Container Base Images

Project Engagement Process/Workflow

Dublin Scope

https://wiki.onap.org/display/DW/ONAP+Normative+container+base+images
https://wiki.onap.org/display/DW/Project+Engagement+and+Contribution+Process
https://wiki.onap.org/display/DW/CIA+Dublin+Release+Planning#CIADublinReleasePlanning-Scope

Resource Limits

• Introduced in Casablanca
• improves pod scheduling

• avoids excessive Pod evacuations

• Intention behind flavors:
• small -> low resources for dev

• large -> higher resources for production

• unlimited = take what is needed

• Refinement needed in Dublin

• Ask for project teams to define and manage

Deployment Options

Development
• development and functional testing only

• onap-dev.yaml
• flavor: small - minimal resource allocation

• no clustering (default chart configuration)

• application-specific optimizations for dev and test

Production
• larger resource allocation for deployments under load

• onap-prod.yaml
• flavor: large - targets production deployment

• clustering enabled for High-Availability and scaled for load

• application-specific optimizations for prod and load

Database Consolidation

Components that use the same database
technology, can share a single cluster with
separate schemas and credentials

Benefits:

• Reduces the ONAP platform footprint

• Common helm charts limit effort required by
individual projects

• Project teams share a common redundancy
strategy

• Simplifies cluster storage and management
across the deployment

Three Steps:

1. Common DB Charts:
- kubernetes/common/postgres

- kubernetes/common/mysql

2. Clustered DBs:
- kubernetes/common/mariadb-galera

3. Shared DBs:
- Common DB instance,

separate tables

How many databases are in ONAP?

1 mySQL

27 Databases in Casablanca!

3 Mariadb

5 Cassandra 5 Elasticsearch

5 Mariadb-Galera

3 postgresSQL

1 Mongodb

2 Redis

1 JanusGraph

1 Titandb

Database Consolidation

• Focus will be on migrating to a single shared Mariadb-Galera cluster
• Scalable based on needs

1 Mariadb-Galera

1 mySQL

7 Mariadb

5 Cassandra

5 Mariadb-Galera

3 postgresSQL

1 Cassandra

1 postgresSQL

Call to Action

Community and PTLs TSC

Embrace recommendations

and collaborate with the

teams leading the effort.

Make compliance with

recommendations mandatory

for Dublin M3.

Application Resource Optimizations

Normative Container Base Images

Resource Limits

Deployment Options

Database Consolidation

