
OOM Priorities for Dublin
• Footprint Optimization

� Dec.12 2018 vF2F:
• https://wiki.onap.org/pages/editpage.action?pageId=45293323

• Security
� Ingress Controller (eliminate node port pain)
� Network Policies
� TLS (Istio/AAF)

• Geo-diversity
� Container Networking Interface (CNI) Plugin (BGP, VxLAN)

• Production Grade Deployments
� Automatic Upgrade from Casablanca to Dublin
� Production Grade Storage Options
� Improved Platform Monitoring & Reporting
� Offline Installer

• Development Improvements
� Helm Chart Ownership
� H/A Kubernetes Cluster Best Practices

https://wiki.onap.org/pages/editpage.action?pageId=45293323

Security

Securing Cluster Access

• 100+ Node Ports
• Huge attack surface
• Administrative

nightmare

Securing Cluster Access
• Cluster Edge Proxy/Load Balancer
• Dramatic reduction in “attack

surface”
• Improved traffic control
• Ambassador/Envoy

� Kubernetes-native microservice
gateway

� Traffic routed through Envoy Proxy
� K8s as state store and for

resiliency
� Authentication and TLS termination
� Rate limiting
� Observability
� Traffic routing

Control of traffic behavior

• Network Policies
• fine-grained Traffic Control

• rich routing rules
• restrict Pod-to-Pod communication
• enforcement via CNI plugin

TLS

• Pluggable Authentication/Authorization/Certificate Management
� SECCOM approved

• Istio as reference integration
� Support for out-of-the-box plugins (what are they?)
� Support for custom plugins to legacy/proprietary auth/cert solutions

• AAF integration implemented as Istio Plugin
• Dublin Release will be validated on Istio with AAF integration
• Optional Istio deployment
• Optional AAF integration

* Istio memory and latency optimizations being evaluated

Geo-diversity

Container Network Interface (CNI)

• Cloud Native Computing Foundation project
• CNI defines specification/API for writing

container networking plugins
• CNI Plugins

• configure network interfaces in containers
• applies routing rules defined in

Network Policies
• many open source and commercial

plugins available
• provides choice for operators

Container Network Interface (CNI)

• Cloud Native Computing Foundation project
• CNI defines specification/API for writing

container networking plugins
• CNI Plugins

• configure network interfaces in containers
• applies routing rules defined in

Network Policies
• many open source and commercial

plugins available
• provides choice for operators

• Nodes may be in the same site or across
Geo-separated sites

• Still 1 cluster

Container Network Interface (CNI)

• Kubernetes uses CNI as an interface between
network providers and Kubernetes pod networking

• Several popular CNI plugins available:

Calico, 45

Canal, 19

Cilium, 74

Flannel, 107

Kopeio, 1

Kube-router,
34

Romana, 10
Weave, 61

Canal+, 171

GitHub - Contributors

Calico Canal Cilium Flannel Kopeio Kube-router Romana Weave

CNI Network Models

Encapsulated/Overlay Network
• Layer 2 (L2) network encapsulated

over the existing Layer 3 (L3) network
(i.e. VXLAN)

• flannel, Canal, Weave & Cilium

Unencapsulated Network
• This network model provides an L3

network to route packets between
containers. (i.e. BGP)

• Calico, Romana & Cilium

Calico

• Calico provides secure network connectivity
for containers and virtual machine workloads

• Calico uses IP-in-IP tunneling or can work
with other overlay networking such as flannel

• Calico also provides dynamic enforcement of
network security rules

• Optional Envoy sidecars that secure
workload-to-workload communications with
mutual TLS authentication and enforce
application layer policy (K8s NetworkPolicy)

• Used by Akraino

https://www.projectcalico.org/

Canal / flannel

• An integration of
Calico and flannel

• flannel creates a
overlay network
(typically VXLAN) to
interconnect K8s
hosts

• flannel is focused on
networking and uses
Calico for network
policies

https://www.projectcalico.org/
https://github.com/coreos/flannel

Cilium

• Cilium brings API-aware network security filtering to Linux containers
• Uses a Linux kernel technology called Berkeley Packet Filters (BPF) – fast!
• Enforce network & application layer security policies based on container identity
• Optional integration with Istio/Envoy (e.g. 1 proxy/host)
• Encapsulated/Overlay & Unencapsulated mode
• Supports K8s: Network Policies, Labels, Ingress, Egress Service
• cilium-agent can be configured to serve Prometheus metrics

See: https://github.com/iovisor/bcc
for BPF tracing tools

https://github.com/iovisor/bcc

Weave

• Weave (from Weaveworks)
is an VXLAN overlay
technology

• Includes a “micro DNS”
server on each node
providing fast service
discovery

• Supports Linux kernel Open
vSwitch to improve
performance

• Doesn’t require an external
cluster store (typically etcd)

https://github.com/weaveworks/weave

Production Grade Deployments

4th release of ONAP – It’s Time

Production Grade Storage Options

• Replacing hostPath with a default Storage Class for Dublin
• NFS
• GlusterFS (delivered in R3 - GlusterFS Infra Demo)
• CephFS
• Cinder

• Casablanca enabled storage class configuration
global: (or per helm chart)
persistence:
storageClass: glusterfs-sc

• Different classes provide
� quality-of-service levels
� backup and restore policies

https://wiki.onap.org/display/DW/OOM+GlusterFS+Deployment+Demo

Automatic Upgrade from Casablanca to Dublin

Holy Grail: Non-disruptive Rolling Upgrades (no service disruption)

Dublin Proposal:
• Automated schema and data migration from Casablanca to Dublin
• Automated component upgrade (mostly there – some issues i.e. jobs)

Stretch Goals:
• Automated component downgrade/rollback – not tested

� uses old data prior to migration

• No service interruption during upgrade

Automatic Upgrade from Casablanca to Dublin

• Collaborating with PTLs/Project teams to deliver schema upgrades with data
migration to Casablanca – will continue through to Dublin
� AAI
� SO
� SDC (under development now)

• Automated using Helm hooks & rolling upgrade/downgrade strategies (POC underway)
� Some applications already had upgrade capabilities

What are the challenges?
• Migrating from independent db instances to shared db cluster

� (i.e. 12 Mariadb -> 1 Mariadb-Galera)
• Upgrade/Rollback built into architecture roadmap and design of every new feature

� api versioning (already underway)
� upgrade first then enable new features based on latest API versions
� evolutionary changes
� message queuing

Improved Platform Monitoring and Reporting

• Better visibility into health of the platform
• Platform Dashboard - all green = platform is good
� replacement of Consul for monitoring
� expansion/integration of existing Logging Project Dashboard(s)
� ability to track down and debug issues

• Enable Monitoring of important Metrics
• Logs (and traces)
� integration with existing Logging project that uses Elastic Stack to

centralize & parse logs
• Trigger notifications to alert on states of interest or concern

Tools
� Prometheus Operator, Zabbix, Prometheus+Grafana, Timelion, Nagios

Offline installer – architecture vision
(Fresh installation)

Prepare SW

package

Download

binaries

Upload

resources
Infra

Rancher

kubernetes
ONAP

Alternative

kubernetes

Alternative

app

Packaging time Run time

Ansible based

Bash based scripts

Not planned as of now

(but can be added later)

Populate

nexus blob

SW Build

(application specific artifacts)
to be packaged into SW and resource

packages

Prepare

Resource

package

Prepare AUX

package

Static images a MUST - eliminate docker containers that “build themselves”!

Development Improvements

Helm Chart Ownership

Need for project teams to take ownership of Helm charts for their projects in Dublin

Project teams know best how to update their own charts to address:
• Configuration changes (in files and inject Helm configuration)
• Software Upgrade and Roll-back support (including DB migration)
• Resource Limits
• Network Policies
• (Anti-)affinity rules

OOM team will continue to own:
• Common “shared” helm charts
• Helm plugins
• Offline Installer
• Service Mesh evolution

Helm Chart Ownership

Challenges:

• Creation of oom repo per project
• Build process support (underway – weekly meetings with LF)
• How to maintain consistency with Standardized Helm Charts?

� need for test suite to validate standardized charts
� inclusion of OOM Team in patch reviews (necessary during transition)
� integration team assistance to help enforce global configuration hierarchy

H/A Kubernetes Cluster

• Infrastructure setup is Operator/Service Provider choice
• Integration lab instabilities has made this a necessity

• No fault of lab – just over subscribed and ONAP increasingly more demanding of resources
• Must be able to have resilient infrastructure via H/A k8s

• Provide H/A Kubernetes Cluster Best Practices
• Migration to RKE for H/A integration environment

� deploy Rancher 2.x server in HA with a single command

