
ONAP API Gateway Proposal

Proposed by : NetCracker Technology
Supported by : Vodafone, Swisscom (Discussion with other operators in progress)

07th May 2019

Summary

Management of Internal/External integrations between Components is a
traditional pain point of ONAP Platform (Integrations with 3rd party systems,
Internal integration over Standard APIs, OSS/BSS Integration etc.)

The study defines a problem statement for current situation of API Management
in ONAP, and corresponding proposal for starting a new ONAP Project (or work
with other Projects to fix the gaps)

Agenda

• Problem Statement

• Proposal

• Execution plan

Problem StatementSection 1

A Set of ONAP Components focused on API Mediation/Adaptation & Routing

API Management – What is Available Today

- External API treats ONAP as a black

box and exposes NBI, transforms

standard (TMF) NBI to ONAP internal

API

- Multi-Cloud used for

mediating/abstracting interactions

across multiple cloud environments

- Controllers (VF-C, App-C , SDNC):

Mediates the LCM of Virtualized

Resources and supports Configuration

Management in a vendor neutral way

- Micro Service Bus routes, Load

balances internal API calls to

registered end points

ONAP as a black box

Ext-API

SDNC, App-C, VFC Multi-Cloud

Micro Service Bus

ONAP Component

ONAP Component

ONAP Component

Problem Statement

Production deployments might
require interoperability with

legacy and 3rd Party
components

Standard Alignment is a
priority in ONAP

Zoo of API Management
Approaches:

• Need for an API abstraction
/façade layer rather than point to
point integration with each
component

• Capability to compose APIs
exposed by different components
at different levels of abstraction
and integration with 3rd party ,
External Components

• Enhancing multiple components
for standard API alignment is time
consuming

• Redundant API adaptation logic
across different components that
cannot be reused – e.g. SOL003
adaptor in SO , VFC and SDNC

• Overhead on project teams to
manage standard adaptation than
core functionality

• APIs are managed at individual
project level : Each component
exposes very low level capability ,
not all will be necessary always to
represent the business logic

• API consumer is depended on the
component level API intricacies,
Entity model rather than what is
necessary and sufficient

• No consistent approach across
projects (security,
documentation, Version
compatibility, style etc) in
managing APIs

Evolution of Platform
functional capability vs.

Use Case capability:

Platform need to evolve
independently, not strictly
based on use cases:

• Missing an appropriate facade
layer to isolate these two needs

• Use cases typically expect
standard/composite APIs for
wider acceptance and adoption,
project specific API alignment
roadmap not completely in sync
with use cases and delay the use
case development.

What is Required?

• A function/framework to build API Façade that gives flexibility/features for following

• Model Driven : Import/Export high level APIs as Swagger file (Not code developed from scratch)

• API LCM, API Market Place , API Catalog, Plan, Subscription Management

• Compose/Aggregate and expose simplified façade APIs for internal service end points

• Content/Payload based API routing

• API Federation across SP/Partner/Opco ONAP instances with desired policy enforcement

• Flexible Security Management (OAuth2.0, Open ID, SSL/TLS, Ext Auth provider integration)

• Circuit Breaking, Timeout, Retries, Rate Control

• Flexible Request and Response Transformation

• API Sharding (Targeted API Deployment)

• Service Capability Discovery (i.e. in addition to URL end point)

• Standard adaptors for transformation (between SDO API and internal API)

• API Policy Enforcement

• Common look and feel and documentation

• Analytics, Metering, Closed and Open Loop Control of APIs

Centralized API Management / Gateway Function

ProposalSection 2

A new function that is dedicated for managing high level APIs across components.

Proposal: A dedicated API Gateway Function

FEATURES:

• Consolidates API Management in a single
logical function

• Augments Integration Layer capabilities in
ONAP

• Reuse API Routing Functions available in
MSB

• Supports Plugin model to attach request and
response transformation logic

• Offload common API tasks from other ONAP
Components (ex. authentication and
aggregation)

• Reuse open source solutions like
Kong/Tyk/WSO2/Zuul/Gravitee/Gloo

API Gateway Proposed Component

ONAP Ext-API

MSB / DMaaP

MSB / DMaaP

ONAP
Component

ONAP
Component

ONAP
Component

ONAP
Component

ONAP
Component

ONAP
Component

API GW Placement in ONAP Architecture

API GW

API GW

API GW

Option 1

Option 2

Option 3

• Option 1: Co-exist with Ext-API , but may
support external and internal APIs on
need basis

• Option 2: Co-exist with MSB, but handles
gateway functionality independently.
MSB handles the Registry and Service
Discovery.

• Option 3: API GW exists as an
independent functional component

• Management toolsets for configuring API context and endpoint

• API Analytics

• Full API Lifecycle Management – Onboard, Policy Control, retire, WL,BL

• API Subscription/Plan management

• API Policy management

• Enhanced API Security Management – OAuth2, JWT,
Open ID Connect etc. – All inbuilt and centrally managed

• Script insertion in API execution flow

• Configurable APIs, Transformation logic than static Code

• Pre-built API Processing plugins

• API Aggregation and Composition

• Swagger Import and Plugin chaining (API Orchestration)

• Management and Monitoring UI

API GW and ONAP External API

• Mediation/Adaptation between TMF APIs and ONAP

internal APIs

• Leverages JOLT JSON Transformation Templates for

Payload transformation

• Order State Monitoring – Hub Resources

Management for callbacks

• Repository for Service Specification Catalog , Service

Order Mapping details

• Leverages SDC JTOSCA Parser for TOSCA Parsing

• Static transformation logic and routing implemented

in code

• External API is close to 30K lines of code and all API adaptors developed from scratch (required custom transformation and enrichment)
• Difficult to manage in the long run – need to leverage a specialized API GW function which can leverage built in plugins and transformation tools

FUNCTIONAL CAPABILITIES IN EXT-API FUNCTIONAL CAPABILITIES AUGMENTED BY API GW

• Full API Lifecycle Management
• Manual and Bulk API Import – Swagger or Management API
• API Subscription/Plan management
• API Catalog and Marketplace
• Integration with multiple external IDP, Monitoring solution
• Rate Limit, Quota Mgmt , Circuit Break
• Tenant, Role Management
• White listing , Black Listing
• Enhanced API Security Management – OAuth2, JWT,

Open ID etc. – All inbuilt and centrally managed
• Script insertion in API execution flow
• Configurable APIs, Transformation logic using expression language
• API Aggregation and Composition
• Management and Monitoring UI
• GraphQL support

API GW and ONAP MSB

• API End point Registration and Discovery

• Static API Endpoint Routing based on port and Service
URL (No payload based routing)

• API Load balancing

• Service Mesh Integration Prototype

• Integration with AAF for security policy enforcement (?)

• Integration with OOM for dynamic Service Registration
and Discovery

• Management APIs for registration of Services

• Basic MSB UI

• Web socket support

• MSB is built on NginX and OpenResty with additional plugins. Though MSB has pre-built API Gateway functionality – External
and Internal API Gateways – These are limited in functionality and not used well in ONAP .

• Existing plugins focus on Routing and Service Discovery – Not providing full functionality offered by typical API GW
• MSB plugins built on Lua script and requires learning curve. Additional development overhead for new plugins and API LCM
• Suggestion is to leverage a full fledged API GW open source solution with OOB capabilities and build MSB capabilities in that.

FUNCTIONAL CAPABILITIES IN MSB FUNCTIONAL CAPABILITIES AUGMENTED BY API GW

• Asynchronous Event Notifications to API Consumers

• Offer Consumer Specific Adaptation for internal Events

• Offer a Web Socket or Server Sent Events
Interface to Consumers for internal Events

• Pre and Post API Invocation notifications to
ONAP internal components

API GW and DMaaP

• Event Publish/Subscribe Mechanism

• Manage Topics – CRUD Operation

• Manage Subscriptions

• Provide a Façade API over Kafka Message Bus

• Client SDK for Working with DMaaP

• Distributed Deployment

• API GW does not have any conflicting capabilities with DMaaP. The two components are complimentary
• API GW can act like an external notification point by registering call back subscriptions to specific topics in DMaaP
• API GW will reuse DMaaP through a custom plugin (which use DMaaP Client SDK)

FUNCTIONAL CAPABILITIES IN DMAAP FUNCTIONAL CAPABILITIES AUGMENTED BY API GW

API Gateway and Service Mesh

API Gateway expose services as
managed APIs

Service Mesh decouple and

offload most of the service-to-

service communication from
business logic.

Service mesh is an inter-service communication infrastructure which doesn’t have any business notion. So it
will be ideal to be used at levels of Microservices.

Typical API GW Functional Architecture

Distributed Gateway Functions (Reverse Proxies)

Gateway Function

(Reverse Proxy)

Gateway Function

(Reverse Proxy)Gateway Function

(Reverse Proxy)

Gateway Function

(Reverse Proxy)

Configuration and

Analytics

API Gateway
Load Balancer (Optional)

Consumer

Back End Services

Load Balancer Auth Provider

API Catalog/
Marketplace

API Management
Portal

API Management Function

External Analytcs and Monetizing Functions

PluginsPluginsPluginsPlugins

Benefits for ONAP

Support single source of truth for Standard APIs, rather than each project maintaining own versions

Augment MSB and Ext-API capabilities:
with Request/Response Composition, Filtering, Policy Enforcement, Security, Orchestration

Facade layer: which abstracts the complexities of internal API

Request/Response Transformation:
Enables ONAP components to align with SDO APIs more easily without changing the existing capabilities

Low impact on existing projects: Enable Operators to plugin standard and legacy integration API adaptors without
impacting the ONAP components

Allows Projects/Components to focus on core functionality rather than worrying about API Transformation

Enables Tenancy Management : Centralized API management can help in implementation of tenancy management through
policies.

Execution PlanSection 3

Proposed Plan

• April-May : Presentation to Operators in ONAP community and see if there is any need for

such functionality – Already presented to more than 6 operators in ONAP Community.

Discussion/Feedback collection in progress . So far we have got positive response from all the

operators.

• May first week : Presentation to Architecture committee – Seek feedback on problem

statement and overall approach

• May first week : Presentation to MSB, Ext-API and identify areas where we can work together –

Discussion with MSB completed , Discussion with Ext-API scheduled for Wednesday, 8th May

• MSB team thinks the proposed capability has some overlap with the features in roadmap

that can be developed with additional plugins

• May last week, June : Consolidate feedback and present to Architecture/TSC Committees for

potential development in E or F Release

• API GW Exposing two types of interfaces

• Simplified internal API which hides SOL003/Vendor complexity

• Pure SOL003 (without VNFM specific extensions)

• Use Case

• Case 1) ONAP Component wants to use Simplified API for VNF
instantiation

• Case 2) ONAP Component supports pure SOL003 API but not aware
of vendor extensions

• Operation

• Case 1: API GW takes care of transforming simplified internal API to
corresponding multiple API calls - SOL003 specific or Vendor
specific APIs

• Case 2: API GW receives pure SOL003 request and enriches the
request with vendor specific SOL003 extended parameters

Proposed Use Cases (Any one to start with)

Scenario 2 :

Dynamic Routing and Request/Response Transformation
for SOL003 API

Scenario 1:

Dynamic Routing and Request/Response Transformation
for SOL005 API

• API GW Exposing two types of interfaces

• Simplified internal API which hides SOL005 API or API exposed by
external NFVO

• Pure SOL005 which can be used for integration with OSS/BSS

• Use Case

• Case 1) ONAP Component wants to access an External NFVO for
LCM operation (sub domain)

• Case 2) ONAP Component wants to work with a component
internal/external via SOL005 API

• Operation

• Case 1: API GW takes care of transforming the simplified internal
API to corresponding API calls to external NFVO APIs

• Case 2 : API GW receives SOL005 API calls and enriches/transforms
the API with internal/external API call

Thank You

