
ONAP Use Case –
Third Party Operational

Domain Manager

July, 2019

Telstra

Telstra ONAP Use Cases

Use Cases for ONAP as: Phase 1 Phase 2 Phase 3

3rd party Operational
Domain Manager

Service On-boarding
(Planned for ONAP F
Release)

Service Activation Service Assurance

VNF Operational Domain
Manager

VNF Inventory Management
(Planned for future ONAP
Release)

VNF LCM VNF LCM contd...

Cross Domain Inventory
Manager

Resource On-boarding
(Planned for future ONAP
Release)

Resource Catalog
Management

ONAP as Master Catalog
Manager

Telstra has multiple domains present under NaaS. These domains include external 3rd party domains and internal network domains. We

are proposing to leverage capabilities of ONAP as an operational domain manager in order to provide services managed by these

domains.

Below matrix depicts the plan for the use cases and different phases within the individual use case

https://wiki.proteuscd.corp.telstra.com/display/ONAPTLS/Use+Case+1+-+ONAP+as+Third+Party+Operational+Domain+Manager
https://wiki.proteuscd.corp.telstra.com/pages/viewpage.action?pageId=79433318
https://wiki.proteuscd.corp.telstra.com/display/ONAPTLS/Use+Case+3+-+ONAP+as+Cross+Domain+Operational+Domain+Manager
https://www.onap.org/

Use Case 1 – Phased Approach

Service Onboarding Service Activation Service Assurance

Import
Service
Catalog

Persist
Service

Definition

Publish
Catalog

BSS retrieves
service
details

Submit Order
using Open

API 641

Invokes 3rd

Party
Domain API

Manage the
resource
inventory

Monitor
Service

Invoke
Corrective

Action

Phase 1 Phase 2 Phase 3

Use Case #1 ONAP as “Third Party” Operational Domain Manager
Business Drivers

Executive Summary - In case of tier 1 / brownfield operators, it’s more likely that ONAP might need to interface with existing orchestration platforms for specific domains This

use case will provide ONAP capability to be operational domain manager for third party services. Service providers will be able to use ONAP to provide end to end automation

for composite or white labelled services which could be provided and managed by third parties. This use case will enable federated catalog and orchestration management.

Business Impact - The use case will provide capability in ONAP for seamlessly on-boarding services from partner (or specific) domain catalog. Lack of this capability today

leads to manual creation of partner services in ONAP which is time consuming and error prone. With introduction of this capability, ONAP will be able to consume domain

specific service definitions via Open APIs and publish the same to run time components. Next phase of this use case will extend the operational domain manager capabilities

to support complete service operations value chain for “Third Party” or Domain specific services via federation.

Business Markets

• Potential candidates for Third Party Domains which can be supported by ONAP in this context:

• Fixed Broadband Service from Last Mile Connectivity Provider

• Managed Network Service from other service providers (Telco Peers)

• Hybrid cloud ecosystem of private and public clouds from multiple cloud service providers

• Special case could be composite services which include service components managed by a existing domain manager

•This use case is also relevant to service provider environment where all services are managed by single ONAP environment (e.g. If there is need to move catalog from dev /

test to production)

•This will be very relevant for automation of digital services delivered via diverse 5G Ecosystem (B2B2X Models) for vertical industry solutions

Funding/Financial Impacts -

•This use case, once developed, can be used by any service provider deploying and using ONAP.

•ONAP as “Third Party” Domain manger will play a significant role in on-boarding partner domains in a uniform manner.

•Service definition from “Third Party” will be made available to service provider in few hours, consumable via an abstraction layer (optional) (NaaS in Telstra context).

•Once catalog is on-boarded ONAP can publish the service definition to other design time and run time components such that ONAP can support complete life cycle

management of the service via federation

All this will essentially bring down time to market for partner services. Telstra is committed to drive the implementation of these capabilities in ONAP across next few releases.

Organization Mgmt, Sales Strategies - There is no additional organizational management or sales strategies for this use case outside of a service provider’s "normal" ONAP

deployment and its attendant organizational resources from a service provider.

Usecase#1: ONAP as “Third Party” Operational Domain Manager

Use Case Overview
• A standards-based approach that allows a service provider to have a network automation platform

for composite or white labelled services managed by specific/ Third Party domain managers

• ONAP provides Operations Domain Management (ODM) and other complementary capabilities to
ensure full automation of the E2E lifecycle management of the service via federation

• Services are exposed and consumed via Network as a Service (NaaS) which is an abstraction layer
above the operational domains and exposes the services to BSS

• Consistent way of consuming 3rd party services for service providers l ike Telstra

• ONAP will facilitate service operations value chain for third party domain via federation

• Substitutes multiple handovers between parties/teams and applications to enable zero touch
automation

3rd Party Domain

ODM (ONAP)

Network as a Service
(NaaS)

• This use case implementation will be phased out across release F and
beyond

• Initial Impact Analysis

• Service Provisioning

• SDC – Import 3rd party service definition, Publish catalog to run time ONAP
components

• Any potential SO enhancements for orchestration

• A&AI – add references on 3rd party domain inventory

• Enhancements to Ext APIs (POST Operation for Catalog API)

• Service l ife cycle management action associated with O2A and T2R must be supported
via federation

• CM: change management (capacity increase to meet scaling demands);

• IM: Support incident management (problem identification and fix); and

• VM: Any support (workflow/notification if any) for services associated with
VNFs managed by “Third Party”)

• Remediation actions are triggered automatically using ONAP as ODM

• Necessary references to service provided by “Third Party” domains will be made
available to support C2M/P2O processes

Beneficiary: 3rd party providers and Service Providers like Telstra

An abstraction layer above the operational domains
which acts as a gateway ; exposes the services to BSS

Operational Domain Manager to support Third
Party Services via federation

Partner Domain – which can be another SP or
another ONAP or non ONAP instance

Changes mentioned in Grey are proposed for subsequent
ONAP Releases beyond Frankfurt

Detailed View

TMF Open APIs

TMF Open APIs Domain Specific APIs

Other Network Domain

BSS

Sample Internet Service - Service Specifications

0..10..1

Internet Service

Access Service 3Access Service 2Access Service 1
Telstra Core /Backhaul

Service

0..1 1..1

CFS/Public Service
Managed by ONAP ODM

RFS/ Private Service
Managed Service from third party suppliers ;
Could be of different access types also like fibre / copper etc

RFS/ Private Service
Managed by Telstra’s Domain

Mapping of Service Specifications of the sample Internet Service with the respective domain managers

TMF SID Framework Terminology
CFS – Customer Facing Service like Internet Access
CFSS – Customer Facing Service Specification
RFS – Resource Facing Service like Copper / Fiber Access
RFSS – Resource Facing Service Specification

Guiding Principles Followed for this Use Case

• Minimize impact to existing ONAP Information Model. (No impact to existing SDC model is foreseen based on
the analysis done so far)

• All communication from external application with ONAP must be via ExtAPI. This is available today for
Northbound Integration for Catalog/Order/Inventory. We would propose to extend this guidance for southbound
integration as well.

• Southbound Payload Translation : Any order payload translation towards 3rd Party Domain Manager to stay
outside ExtAPI.

• Exposure of third party domain : ONAP will communicate with third party domain and this will not be directly
exposed to BSS.

• Controlled access to ONAP SDC Catalog – Only consumers defined in ONAP will have access to post service
specification

• Separation of Concerns : Third Party payload for service definition will not have resource level deployment
artifacts since resource management is responsibility of third party

Design Time and Run Time View

NaaS (Optional)

BSS
(Product Specification, CFSS References)

ONAP - Third Party Operational Domain Manager
(CFS Life Cycle Management)

3rd Party Domain

(RFS, Resource Life Cycle management)

Onboard PNF/VNF, Compose RFS, Instantiate and Configure Resource/RFS)

Publish RFSS to ONAP for each Service
(This is actually CFSS from 3rd Party
Perspective but RFSS from ONAP
perspective)

Receive RFSS for each Service
Create CFSS for composite service
including Partner Domain Service
(composed of multiple RFSS potentially
across domains)

BSS to pull CFSS from ONAP via NaaS
(Optional)

POST RFS Definition
(TMF Open API -633)

SDC
(CFSS, RFSS Reference)

SO
(Orchestrate CFS Order,

Federate RFS Order)

AAI
(CFS Instance, RFS

Instance Reference and
Topology)

Post RFS Order
(TMF Open API - 641)

POST Inventory
(TMF Open API - 638)

Payload transformation from TMF Open
API to 3rd Party Domain is outside NBI

Gets CFS Instance update from SO and
RFS Instance Update from 3rd Party

ExtAPI

Further SO and AAI impact analysis
is in progress via PoC

SO should directly post this line item (via
ExtAPI) to third party without going via
VIM / MultiCloud

Flow Diagram for 3rd Party Catalog Sync– Design Time

ONAP Ext API

1 - Invoke Open API 633 Service Catalog (INTERLUDE)

2 - Update SDC Catalog

5b - Update AAI inventory

ONAP SO ONAP AAI

5a - Update SO catalog

ONAP SDCBSS 3rd Party Domain

3 - Notify Update Success (INTERLUDE)

5c - Get Service Catalog
Details LEGATO

External Partner Domain
which is managed by ONAP

ONAP components involved in the
catalog sync and orchestration

Upstream BSS layer
(optionally NaaS layer can exist between BSS and ONAP)

4 –Test, Verify and Distribute the Service.

D
es

ig
n

 T
im

e

5 – Catalog Notification to AAI and SO

The flow steps (1 – 5c)

Catalog Sync Summary

1 – External Third party domain exports it service catalog details to Telstra. Telstra orchestrator ONAP exposes TMF Open API 633 Service Catalog API via

ONAP Ext API component. Third Party Domain leverages the API 633 to POST the Service Catalog payload.

POST nbi/api/v2/serviceSpecification

Request body – TMF 633 Service Catalog compatible payload

Payload contents:

RFSS for Partner Domain Service

2 – ONAP Ext API updates SDC catalog by invoking internal SDC API

POST sdc/v1/catalog/services

3 – Ext API notifies Third party after successful update within ONAP

4 – Service Definition Updates / Creation of Composite Service happen in SDC UI (any manual updates to the received service definition)

Test, Verify and Distribute the Service definition. SDC updates other ONAP components (which have registered with SDC DMaaP) with catalog details

5a – SO pulls SDC catalog details

5b – AAI pulls inventory details

Ext API notifies northbound systems (BSS/NaaS) after successful import of the service catalog into ONAP.

5c - BSS retrieves catalog information from ONAP

Flow Diagram for 3rd Party Order Activation – Run Time

10 - Invoke 3rd Party Ordering API (INTERLUDE) – Order translation outside NBI

7 - Submit Order

9 - Send RFS to Ext API

External Partner Domain
which is managed by ONAP

ONAP components involved in the
catalog sync and orchestration

Upstream BSS layer
(optionally NaaS layer can exist between BSS and ONAP)

6 - Submit Order
– Open API 641
LEGATO

R
u

n
 T

im
e

8 – Decompose Service &
Update CFS Service Instance

11 - Update RFS instance details received from 3rd Party

ONAP Ext API ONAP SO ONAP AAIONAP SDCBSS 3rd Party Domain

12 - Update SO with status about RFS order item completion

The flow steps (6 – 12)

Order Activation Summary

6 – BSS submits order using TMF 641 Service Ordering API, that is exposed by ONAP Ext API

7 – ONAP Ext API submits the request to ONAP SO

8 – ONAP SO decomposes the service, updates AAI with Service instance details

9 – Ext API submits the request by invoking Ext API (This is similar to what is being proposed for CCVPN use case as well. This maintains that only Ext API

interacts with outside world and other ONAP components do not) [Note - There can be multiple 3rd Party domains, After SO decomposes the CFS into

multiple RFSs, Ext API will send the request to the corresponding 3rd party domain]

10 – ONAP Ext API invokes Ordering API, order translation to 3rd Party format happens outside Ext API, translated order gets submitted to 3rd Party domain

11 – Ext API updates AAI with the RFS instance details received from 3rd party response. AAI topology gets synced with the Service instance details to the

level of the RFS instance.

12 - Ext API updates SO with the order item status for the RFS order item. Once SO has received responses for all the RFS order items in the order, it sends

a response to Ext API which then responds to BSS with order update.

Impact Analysis So Far for 3rd Party Catalog Sync

SDC

• Expose POST functionality of SDC Onboarding API as
an external API within ONAP

• Reuse sdc-dao to update the Cassandra database
and store the new service in SDC catalog

• Reuse SDC distribution functionality to distribute the
new service to registered ONAP components (no
change)

• Existing UUID creation logic will be used

• Last mile access service from 3rd party will be used
for detailed analysis and reference implementation

• TOSCA based onboarding in work is progress in SDC,
it supports heat based onboarding only. The TOSCA
based work is ongoing separately in Modeling
project. This dependency on Modeling project need
to be looked into.

Ext API / NBI

• Introduce POST for TMF API 633 – Service Catalog API

•Realization of POST operation in Ext API will depend on
decisions taken during SDC implementation.

• Ext API changes to be planned for future
release

Possible Approaches for 3rd Party Catalog Sync

Payload Option 1: JSON

(Proposed)

•Leveraging existing approach for
Ext API / NBI

•Ext API will expose POST for
TMF633 Service Catalog

•3rd Party will send the payload in
TMF633 format

•ExtAPI / NBI will send the JSON in
SDC compatible format for its
Consumption in
v1/catalog/services

Payload Option 2: CSAR

•Potential reuse from TOSCA
onboarding Project in SDC

•This might alter existing Ext API /
NBI approach

•There would be additional
implementation at Third Party
end to generate higher level
TOSCA

Entity Option 1: Resource

•Onboard the resource in ONAP
SDC as a VSP, will require
updates to VSP onboarding API

Entity Option 2: Service

(Proposed)

• Onboard the service in ONAP
SDC as a Service, will require
updates to Service onboarding
API

Legend : Pros , Cons, Neutral

Publish Resource or RFSS to ONAP using JSON
(INTERLUDE) {POST nbi/api/v2/serviceSpecification}

Flow Diagram for 3rd PARTY SDC Catalog Sync

ONAP Ext API

1 - Invoke Open API 633 Service Catalog

2 - Update SDC Catalog

5a – Pull catalog details

ONAP SO / AAI /…ONAP SDCBSS/NaaS 3rd Party Domain

3 - Notify Update Success

5b - Get Service Catalog Details LEGATO
{GET nbi/api/v2/serviceSpecification}

4 – Service Composition/Workflow

{sdc/v1/catalog/services}

Grey arrows are existing capabilities being reused

5a – Notify AAI/SO/…

Invoke onboarding API {POST sdc/v1/catalog/services} JSON contents:
RFSS for partner service to be created as a Service in ONAP

Catalog-be - ResourcesServlet
- createResource()
ServiceServlet
– createService
Orchestration
TemplateProcessHandler
-- process()

2a. Update Cassandra DB
Invoke sdc-dao package to
Parse the payload and insert
data in Cassandra schema

JSON
"name": “AccessService",
"description": "Partner Access Service",

"serviceSpecCharacteristic": [
{
"name": “bandwidth“,
"valueType": "string“
}

Steps of Flow Diagram SDC Catalog sync

Steps 1 to 3 on previous slide - which are part of new functionality - are explained here.
Steps 4 onward depict existing functionality reused

1 – Invoke TMF 633 Service Catalog API
3rd Party Domain’s Payload to be submitted as a JSON –
Expected format - Service Specification payload specified by TMF 633

2- Ext API to invoke SDC onboarding API to updated ONAP SDC catalog
Invoke ServiceServlet - createService() – JSON payload
Currently on-boarding API is invoked when Create Service button is clicked in SDC UI
Ext API needs to be added as a consumer of the API
Existing logic to be reused:

UUID creation in validateServiceBeforeCreate
Logic to add default TOSCA components

2a – Persist the service in SDC database

3-Ext API will Notify 3rd Party after SDC catalog update
Register for Distribution: Ext API will register itself with SDC.
Ext API will receive distribution notification from SDC after service catalog creation in SDC
Ext API notifies 3rd Party Domain

Payload structure of input to ONAP from Third Party
{

"id": "2944ce7c-a7ce-4816-b08c-d51b8bbb2830",

"name": “partner Access",

"description": “Partner Access",

"version": "v1.0.0",

"lifecycleStatus": "Active",

"serviceSpecCharacteristic": [

{

"name": "serviceDetails",

"description": "Service details",

"valueType": "object",

"@type": "ServiceSpecCharacteristic",

"minCardinality": 1,

"maxCardinality": 1,

"access": [

"Create",

"Read",

"Update"

],

"serviceSpecCharacteristicAttributes":[…],

"configurable": false,

"isUnique": false,

"extensible": false

},

{ "name": "order"…},

{ "name": “access“…},

],

"@type": "NetworkServiceSpecification",

"isBundle": false,

"lastUpdate": "2019-05-17T06:37:31.911Z"

}

Payload structure of input to SDC Service creation API-with sample

{

"contactId": "cs0008",

"categories": [{}]

"name": “ExtService",

"tags": [“ExtService"],

"componentType": "SERVICE",

"projectCode": "010203",

"properties": [{}]

"inputs": [{}]

"ecompGeneratedNaming": true,

"serviceApiArtifacts": {},

"instantiationType": "A-la-carte",

"environmentContext": "General_Revenue-Bearing“

}

"name": “Partner",

"normalizedName": “Partner",

"uniqueId":

"serviceNewCategory.Partner",

"icons": ["Partner"],

"subcategories": null,

"version": null,

"ownerId": null,

"empty": false,

"type": null

{

"uniqueId": "",

"type": "integer",

"required": false,

"definition": false,

"description": "size",

"password": false,

"name": "addressId",

"hidden": false,

"immutable": false,

"parentUniqueId": "",

"isDeclaredListInput": false,

"schemaType": "",

"schemaProperty": {

"type": "",

"required": false,

"definition": true,

"password": false,

"hidden": false,

"immutable": false,

"isDeclaredListInput": false,

"getInputProperty": false,

"empty": false

},

"getInputProperty": false,

"ownerId": "",

"empty": false

}

Placeholder for attributes needed

for instantiation

Structure of SDC generated TOSCA CSAR

TOSCA-Meta-File-Version: 1.0
CSAR-Version: 1.1
Created-By: Carlos Santana
Entry-Definitions: Definitions/service-ServicePoc2-template.yml
Name: csar.meta
Content-Type: text/plain

SDC-TOSCA-Meta-File-Version: 1.0
SDC-TOSCA-Definitions-Version: 9.0

Below is the expanded view of the TOSCA CSAR generated by ONAP SDC.
Definitions – contains the interface yaml file which contains the metadata definition of the properties defined in the payload (detailed in previous slide)

Service spec
characteristics get

added here

No Artifacts folder as
there are no

deployment artifacts
for the partner service

Flow Diagram for Ext API to consume SDC On-Boarding API

ONAP Ext API UEB

2 - POST apikeys/create

Created

3 - Send the POST request with authentication keys
POST sdc/v1/catalog/services

202 Created

ONAP SDC

1 - Allow POST
operation on
/catalog/services
for External API

1 - SDC to expose on-boarding API to Ext API
2 - Ext API to send apikeys for the onboarding request
3 - Ext API invoke SDC onboarding API

Currently on-boarding API is invoked when Create Service
button is clicked in SDC UI
Today, SDC on-boarding API is part of SDC Internal API
and is not consumed by any ONAP component.
(Only GET /catalog/services is exposed)
Changes -
SDC on-boarding API needs to be exposed
(within ONAP) similar to SDC Distribution APIs
Ext API needs to be added as a consumer of the API
for POST operation.

Flow Diagram for Ext API to register for SDC Service Creation Notification

ONAP Ext API UEB

2 - POST apikeys/create

Created

3 - Send the POST request with authentication keys
POST sdc/v1/registerForDistribution

Distribution Topic

ONAP SDC

1 – Ext API to get server list
2 - Ext API creates API keys to authenticate
3 - Ext API registers with SDC

Ext API needs to Notify 3rd Party after successful Service
catalog update on ONAP/SDC
So Ext API needs to register for notification:
Ext API will receive distribution notification from SDC
after service catalog creation in SDC
Ext API notifies 3rd Party Domain

As part of the current phase of the use case, we will
Concentrate on SDC changes and stub out Ext API function

1 - GET sdc/v1/distributionUEBcluster

UEBServerList

Activities in Scope for SDC

• Impact Analysis
• Created epic https://jira.onap.org/browse/SDC-2378

• Stories added so-far under the epic
• https://jira.onap.org/browse/SDC-2382
• https://jira.onap.org/browse/SDC-2383
• https://jira.onap.org/browse/SDC-2385

• Sprint Planning
• Design
• Implementation
• Architecture Documentation
• Integration ??
• Testing Based on ROBOT Framework
• Defect Management

https://jira.onap.org/browse/SDC-2378
https://jira.onap.org/browse/SDC-2382
https://jira.onap.org/browse/SDC-2383
https://jira.onap.org/browse/SDC-2385

SDC-2382 - Introduce a new category for the 3rd party Service

S. No. Change

1 We need to introduce new service category for 3rd Party Services

2 The dashboard has to be customized for the new service category, as certain functionalities
need to be shown to the designer for the new kind of service

3 ‘Composition’ tab need not be shown to the catalog user, as the 3rd Party service will not
have VNF components to be added to it

4 3rd party service will only be created using an API. So manual creation of the service will be
disabled

Projects Files

catalog-be sdc\catalog-be\src\main\resources\import\tosca\categories\categoryTypes.yml

catalog-ui • menu.js
• workspace-view-model.ts

SDC-2383 - Expose the API for service creation as an External API

Changes

SDC exposes GET on Service catalog to Ext API

Same auth can be used by Ext API to consume POST as well

SDC needs to introduce the method for service creation

The exposed method will reuse the logic available

Project – catalog-be
Files – CrudExternalServlet
Add method createServiceExternal– it will invoke existing ServiceBusinessLogic.createService

SDC-2385 - Introduce property mapping rules to define parent-child
mapping for properties added in service definition

Changes

We need to define service characteristics for 3rd party services and many of the characteristics are of
object type with child nodes for child attributes.

e.g.

bandwidth attribute can have child nodes upstream_speed, downstream_speed, unit and those child
nodes can be of type enum will multiple values. see attached file

In SDC payload, we define the service specification in a single hierarchy. We would need a logic to map the
child nodes to the parent node

POC – Service on-boarding using a 3rd Party payload

A POC has been done on local SDC dev instance to on-board the service using a sample payload for a 3rd party access service
Attached video takes us through the service creation journey, from creation to distribution-approved,
in SDC with the help of the API and SDC UI

It is also uploaded on the use case page at https://wiki.onap.org/display/DW/Third-party+Operational+Domain+Manager

https://wiki.onap.org/display/DW/Third-party+Operational+Domain+Manager

Service Distribution – Design Time – SO Impact

4 – Request details to update inventory

ONAP SO ONAP AAI

2 – Listen to topic

ONAP SDC

1 - Distribute the Service.
Notify distribution

D
es

ig
n

 T
im

e

DMAAP Topic

1 - SDC distributes the service
2 – SO/AAI are registered to listen to DMaaP
3- SO pulls the detail, parses the CSAR
and saves the service
4 – AAI pulls the details and AAI ML is updated

The 3rd Party Service CSAR doesn’t have a resource
SO looks for a resource in the TOSCA template, filters
it as VF/PF or Other (Allotted resource for CCVPN).
This filter needs to be bypassed for a 3rd Party Service

2a – Parse the CSAR
Save the service

3 – Request details to update SO catalog

Request Response

Service Instantiation – Run Time – SO Impact

ONAP AAIONAP Ext API

1 –CFS Service Order

R
u

n
 T

im
e

ONAP SO

1 – Ext API submit the Service Order
2 - SO identifies the workflow and parses the 3rd party
Order details
3 – SO updates AAI with Service instance details
4 – Sends the 3rd party (RFS) order to Ext API which sends it out
5 – SO updates AAI with the RFS instance details received
6 – SO sends the final response to Ext API

Potential to ReUse SO CCVPN infra -
Reuse - Create3rdONAPE2EServiceInstance.
Reuse - ExternalAPIUtil.PostServiceOrderRequestsTemplate
The groovy script will need to be enhanced to cater to 3rd Party Service

saveSPPartnerInAAI can be reused
[Analysis ongoing for SPPartner model in AAI]

2a – Identifies the workflow for
the service
Identifies Line Item for 3rd party
Service
Parses 3rd Party Order details

4 –RFS 3rd Party Service Order

3 –Update CFS Service instance details

5 –Update RFS Service instance details

Request Response

6 –CFS Service Order Response

s

Thank you

