
ONAP Third Party Operational
Domain Manager

May, 2019

Telstra

Use Case #1 ONAP as “Third Party” Operational Domain Manager
Business Drivers

Executive Summary - In case of tier 1 / brownfield operators, it’s more likely that ONAP might need to interface with existing orchestration platforms for specific domains This use case will
provide ONAP capability to be operational domain manager for third party services. Service providers will be able to use ONAP to provide end to end automation for composite or white
labelled services which could be provided and managed by third parties. This use case will enable federated catalog and orchestration management.

Business Impact - The use case will provide capability in ONAP for seamlessly on-boarding services from partner (or specific) domain catalog. Lack of this capability today will lead to manual
creation of partner services in ONAP which is time consuming and error prone. With introduction of this capability, ONAP will be able to consume domain specific service definitions via Open
APIs and publish the same to run time components. Next phase of this use case will extend the operational domain manager capabilities to support complete service operations value chain
for “Third Party” or Domain specific services via federation.

Business Markets
• Potential candidates for Third Party Domains which can be supported by ONAP in this context:
• Fixed Broadband Service from Last Mile Connectivity Provider
• Managed Network Service from other service providers (Telco Peers)
• Hybrid cloud ecosystem of private and public clouds from multiple cloud service providers
• Special case could be composite services which include service components managed by a existing domain manager

•This use case is also relevant service provider environment where all services are managed by single ONAP environment (e.g. If there is need to move catalog from dev / test to production)
•This will be very relevant for automation of digital services delivered via diverse 5G Ecosystem (B2B2X Models) for vertical industry solutions

Funding/Financial Impacts -
•This use case, once developed, can be used by any service provider deploying and using ONAP.
•ONAP as “Third Party” Domain manger will play a significant role in on-boarding partner domains in a uniform manner.
•Service definition from “Third Party” will be made available to service provider in few hours, consumable via an abstraction layer (optional) (NaaS in Telstra context).
•Once catalog is on-boarded ONAP can publish the service definition to other design time and run time components such that ONAP can support complete life cycle management of the
service via federation
All this will essentially bring down time to market significantly for partner services. Telstra is committed to drive the implementation of these capabilities in ONAP across next few releases.

Organization Mgmt, Sales Strategies - There is no additional organizational management or sales strategies for this use case outside of a service providers "normal" ONAP deployment and
its attendant organizational resources from a service provider.

Usecase#1: ONAP as “Third Party” Operational Domain Manager

Use Case Overview
• A standards-based approach that allows a service provider to have a network automation platform

for composite or white labelled services managed by specific/ Third Party “ domain managers

• ONAP provides Operations Domain Management (ODM) and other complementary capabilities to
ensure full automation of the E2E lifecycle management of the service via federation

• Services are exposed and consumed via Network as a Service (NaaS) which is an abstraction layer
above the operational domains and exposes the services to BSS

• Consistent way of consuming 3rd party services for service providers like Telstra

• ONAP will facilitate service operations value chain for third party domain via federation

• Substitutes multiple handovers between parties/teams and applications to enable zero touch
automation

3rd Party Domain

ODM (ONAP)

Network as a Service
(NaaS)/ BSS

• This use case implementation will be phased out across release F and G

• Initial Impact Analysis

• Service Provisioning

• SDC – Import 3rd party service definition, Publish catalog to run time ONAP
components

• Any potential SO enhancements for orchestration

• A&AI – add references on 3rd party domain inventory

• Enhancements to Ext APIs (POST Operation for Catalog API)

• Service life cycle management action associated with O2A and T2R must be supported
via federation

• CM: change management (capacity increase to meet scaling demands);

• IM: Support incident management (problem identification and fix); and

• VM: Any support (workflow/notification if any) for services associated with
VNFs managed by “Third Party”)

• Remediation actions are triggered automatically using ONAP as ODM

• Necessary references to service provided by “Third Party” domains will be made
available to support C2M/P2O processes

Beneficiary: 3rd party providers and Service Providers like Telstra

An abstraction layer above the operational domains
which acts as a gateway ; exposes the services to BSS

Operational Domain Manager to support Third
Party Services via federation

Partner Domain – which can be another SP or
another ONAP or non ONAP instance

Changes mentioned in Grey are proposed for subsequent
ONAP Releases beyond Frankfurt

Detailed View

TMF Open APIs

TMF Open APIs Domain Specific APIs

Other Network Domain

Product Modelling & Distribution

NAAS (Optional)BSS

ONAP
Operational Domain Manager

3rd Party Domain

Service Distribution

Product Distribution

1. Publish RFSS to ONAP for each Service (This is
actually CFSS from 3rd Party Perspective but RFSS
from ONAP perspective)

2. Receive RFSS for each Service
3. Create CFSS for composite service including Partner
Domain Service (composed of multiple RFSS
potentially across domains)

4. Load CFSS from ONAP for Partner Domain
Service

5. Publish APIs to BSS for

Service Distribution

Technical realization approach is being debated.

Should ONAP SDC consume a resource entity or a service entity ?

Flow Diagram for 3rd Party Catalog Sync and Order Activation

ONAP Ext API

1 - Invoke Open API 633 Service Catalog (INTERLUDE)

2 - Update SDC Catalog

5b - Update AAI

9 - Invoke 3rd Party Ordering API (INTERLUDE)

ONAP SO ONAP AAI

5a - Update SO catalog

ONAP SDCBSS/NaaS

7 - Submit Order

3rd Party Domain

3 - Notify Update Success INTERLUDE

5c - Get Service Catalog Details
LEGATO

8 - Decompose Service Send back to Ext API

External Partner Domain
which is managed by ONAP

ONAP components involved in the
catalog sync and orchestration

Upstream BSS layer including
NaaS.

6 - Submit Order – Open API 641
LEGATO

4 – Service Composition/Workflow

The flow steps

Catalog Sync Summary
1 – External Third party domain exports it service catalog details to Telstra. Telstra orchestrator ONAP exposes TMF Open API 633 Service Catalog API via ONAP Ext API
component. Third Party Domain leverages the API 633 to POST the Service Catalog payload.
POST nbi/api/v2/serviceSpecification
Request body –ONAP compatible Service CSAR / (json ??)
CSAR contents:
RFSS for Partner Domain Service
2 – ONAP Ext API updates SDC catalog by invoking internal SDC API
POST sdc/v1/catalog/services
3 – Ext API notifies Third party after successful update within ONAP
4 – Service Decomposition happens in SDC (any manual updates e.g. creating composite service)
SDC updates other ONAP components (which have registered with SDC DMaaP) with catalog details
5a – SO pulls SDC catalog details
5b – AAI pulls inventory details
Ext API also notifies northbound systems (BSS/NaaS) after successful import of the service catalog into ONAP.
5c - BSS retrieves catalog information from ONAP
Order Activation Summary
6 – BSS submit order using TMF 641 Service Ordering API, that is exposed by ONAP Ext API
7 – ONAP Ext API submits the request to ONAP SO
8 – ONAP SO decomposes the service and submits the request by invoking Ext API (This is similar to what is being proposed for CCVPN use case as well. This maintains that
only Ext API interacts with outside world and other ONAP components do not)
9 – ONAP Ext API invokes the Third Party’s Ordering API

Impact Analysis So Far for 3rd Party Catalog Sync

SDC

• Expose POST functionality of SDC Onboarding API as
an external API within ONAP

• Reuse sdc-dao to update the Cassandra database
and store the new service in SDC catalog

• Reuse SDC distribution functionality to distribute the
new service to registered ONAP components (no
change)

• Existing UUID creation logic will be used

• Last mile access service from 3rd party will be used
for detailed analysis and reference implementation

• TOSCA based onboarding in work in progress in SDC,
it supports heat based only. The TOSCA based work
is ongoing separately in Modeling project. This
dependency on Modeling project need to be looked
into.

Ext API / NBI

• Introduce POST for TMF API 633 – Service Catalog API

•Realization of POST operation in Ext API will depend on
decisions taken during SDC implementation.

• Ext API changes to be planned for future
release

Possible Approaches for 3rd Party Catalog Sync

Payload Option 1: JSON

(Proposed)

• Leveraging existing approach for
Ext API / NBI

• ExtAPI / NBI will send the JSON in
SDC compatible format for its
Consumption in
v1/catalog/services

Payload Option 2: CSAR

• Potential reuse from TOSCA
onboarding Project in SDC

• This might alter existing Ext API /
NBI approach

• There would be additional
implementation at Third Party
end to generate higher level
TOSCA

Entity Option 1: Resource

• Onboard the resource in ONAP
SDC as a VSP, will require
updates to VSP onboarding API

Entity Option 2: Service

(Proposed)

• Onboard the service in ONAP
SDC as a Service, will require
updates to Service onboarding
API

Legend : Pros , Cons, Neutral

Publish Resource or RFSS to ONAP using TOSCA Service JSON
(INTERLUDE) {POST nbi/api/v2/serviceSpecification}

Flow Diagram for 3rd PARTY SDC Catalog Sync

ONAP Ext API

1 - Invoke Open API 633 Service Catalog

2 - Update SDC Catalog

5a – Pull catalog details

ONAP SO / AAI /…ONAP SDCBSS/NaaS 3rd Party Domain

3 - Notify Update Success - INTERLUDE

5b - Get Service Catalog Details LEGATO
{GET nbi/api/v2/serviceSpecification}

4 – Service Composition/Workflow

{sdc/v1/catalog/services}

Grey arrows are existing capabilities being reused

5a – Notify AAI

Invoke onboarding API {POST sdc/v1/catalog/services} CSAR/JSON contents:
RFSS for partner service to be created as a Service in ONAP

Asdctool - CSARGenerator
– generateCsar()
Catalog-be - ResourcesServlet
- createResource()
ServiceServlet
– createService
Orchestration
TemplateProcessHandler
-- process()

2a. Update Cassandra DB
Invoke sdc-dao package to
Parse the CSAR and insert
data in Cassandra schema

JSON
"name": “AccessService",
"description": "Partner Access Service",
"serviceSpecCharacteristic": [
{
"valueType": "string",
"name": “bandwidth“
}

Steps of Flow Diagram SDC Catalog sync

Steps 1 to 3 on previous slide - which are part of new functionality - are explained here.
Steps 4 onward depict existing functionality reused

1 – Invoke TMF 633 Service Catalog API
3rd Party Domain’s Payload to be submitted as a JSON –
Expected format - Service Specification payload specified by TMF 633

2- Ext API to invoke SDC onboarding API to updated ONAP SDC catalog
Invoke ServiceServlet - createService() – JSON payload
Currently on-boarding API is invoked when Create Service button is clicked in SDC UI
Ext API needs to be added as a consumer of the API
Existing logic to be reused:

UUID creation in validateServiceBeforeCreate
Logic to add default TOSCA components

2a – Persist the service in SDC database

3-Ext API will Notify 3rd Party after SDC catalog update
Register for Distribution: Ext API will register itself with SDC.
Ext API will receive distribution notification from SDC after service catalog creation in SDC
Ext API notifies 3rd Party Domain

Payload structure of input to ONAP from Third Party
{

"id": "2944ce7c-a7ce-4816-b08c-d51b8bbb2830",

"name": “partner Access",

"description": “Partner Access",

"version": "v1.0.0",

"lifecycleStatus": "Active",

"serviceSpecCharacteristic": [

{

"name": "serviceDetails",

"description": "Service details",

"valueType": "object",

"@type": "ServiceSpecCharacteristic",

"minCardinality": 1,

"maxCardinality": 1,

"access": [

"Create",

"Read",

"Update"

],

"serviceSpecCharacteristicAttributes":[…],

"configurable": false,

"isUnique": false,

"extensible": false

},

{ "name": "order"…},

{ "name": “access“…},

],

"@type": "NetworkServiceSpecification",

"isBundle": false,

"lastUpdate": "2019-05-17T06:37:31.911Z"

}

Payload structure of input to SDC Service creation API-with sample

{

"contactId": "cs0008",

"categories": [{}]

"name": “ExtService",

"tags": [“ExtService"],

"componentType": "SERVICE",

"projectCode": "010203",

"properties": [{}]

"inputs": [{}]

"ecompGeneratedNaming": true,

"serviceApiArtifacts": {},

"instantiationType": "A-la-carte",

"environmentContext": "General_Revenue-Bearing“

}

"name": “Partner",

"normalizedName": “Partner",

"uniqueId":

"serviceNewCategory.Partner",

"icons": ["Partner"],

"subcategories": null,

"version": null,

"ownerId": null,

"empty": false,

"type": null

{"uniqueId": "",

"type": "object",

"required": false,

"schema": {

"property": {

"type": "string",

"definition": true,

"password": false,

"name": "phonenumber",

"hidden": false,

"immutable": false,

"isDeclaredListInput":

false,

"empty": false

},

"empty": false

},

"password": false,

"name": "contact",

"hidden": false,

"isDeclaredListInput": false,

"empty": false}

Placeholder for attributes needed

for instantiation

Structure of SDC generated TOSCA CSAR

TOSCA-Meta-File-Version: 1.0
CSAR-Version: 1.1
Created-By: Carlos Santana
Entry-Definitions: Definitions/service-ServicePoc2-template.yml
Name: csar.meta
Content-Type: text/plain

SDC-TOSCA-Meta-File-Version: 1.0
SDC-TOSCA-Definitions-Version: 9.0

Below is the expanded view of the TOSCA CSAR generated by ONAP SDC.
Definitions – contains the interface yaml file which contains the metadata definition of the properties defined in the payload (detailed in previous slide)

Service spec
characteristics get

added here

No Artifacts folder as
there are no

deployment artifacts
for the partner service

Flow Diagram for Ext API to consume SDC On-Boarding API

ONAP Ext API UEB

2 - POST apikeys/create

Created

3 - Send the POST request with authentication keys
POST sdc/v1/catalog/services

202 Created

ONAP SDC

1 - Allow POST
operation on
/catalog/services
for External API

1 - SDC to expose on-boarding API to Ext API
2 - Ext API to send apikeys for the onboarding request
3 - Ext API invoke SDC onboarding API

Currently on-boarding API is invoked when Create Service
button is clicked in SDC UI
Today, SDC on-boarding API is part of SDC Internal API
and is not consumed by any ONAP component.
(Only GET /catalog/services is exposed)
Changes -
SDC on-boarding API needs to be exposed
(within ONAP) similar to SDC Distribution APIs
Ext API needs to be added as a consumer of the API
for POST operation.

Flow Diagram for Ext API to register for SDC Service Creation Notification

ONAP Ext API UEB

2 - POST apikeys/create

Created

3 - Send the POST request with authentication keys
POST sdc/v1/registerForDistribution

Distribution Topic

ONAP SDC

1 – Ext API to get server list
2 - Ext API creates API keys to authenticate
3 - Ext API registers with SDC

Ext API needs to Notify 3rd Party after successful Service
catalog update on ONAP/SDC
So Ext API needs to register for notification:
Ext API will receive distribution notification from SDC
after service catalog creation in SDC
Ext API notifies 3rd Party Domain

As part of the current phase of the use case, we will
Concentrate on SDC changes and stub out Ext API function

1 - GET sdc/v1/distributionUEBcluster

UEBServerList

Activities in Scope for SDC

• Impact Analysis
• Sprint Planning
• Design
• Implementation
• Architecture Documentation
• Integration ??
• Testing Based on ROBOT Framework
• Defect Management

s

Thank you

