

ONAP open lab – A fully virtual flavor

Ver 0.5

Helen Chen, William Chen, Lingli Deng, Chris Donley, Ranny Haiby, Jason Hunt, Catherine Lefevre, Tomer Oster, Oliver Spatscheck, Chengli Wang, Gary Wu, Kang Xi, Yang Xu

May, 2017

Purpose of building an open lab

- The primary focus of the ONAP lab is to support the CI/CD of the board approved release use cases
 - Run the release gating test cases
- By having additional lab(s) we may :
 - Provide easy access for all developers in the community
 - Support ONAP demos
 - Support Interoperability testing with multi-vendor's hardware and software in "real" environments
 - Showcase use cases outside the board approved ones

We assume there would be multiple labs (physical and virtual) and multiple usages (CI/CD, Demos, Integration, etc.). The assignment of usages to labs is out of the scope of this document, but the goal is not to limit any possible assignment

Implementation options

• Physical (Will of course use virtualization on top of the lab hardware)

- Requires dedicated hardware and real estate
 - May come from community member contributions no CapEx upfront
- Requires support personnel Already committed by some community members
- Has fixed capacity with typically long lead times for expansion
- Limited SLA Downtime may occur
- Virtual (cloud hosted)
 - No platform maintenance required (handled by the cloud provider)
 - Elastic capacity
 - Globally accessible
 - "Practice what we preach" full virtualization
 - Incurred OpEx
 - Well defined SLA

Challenges of a virtual lab

- Cost
 - Annual budget for resource consumption
 - Resource capping (per vendor? Only paying members? Etc.)
- Running vendor VNFs on a public cloud
 - Integration with the cloud platform (CPU, storage and networking)
 - Security and confidentiality Who is liable in case of data breech that will compromise vendor assets?
 - Integration with cloud platform management (may be different than plain OpenStack)
 - Performance how to match on premise capacity to cloud offering
- Connectivity to physical hardware

Cost and capping

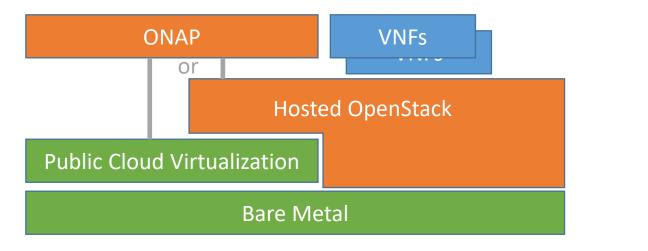
- Virtual lab footprint can be kept minimal during normal times and scaled out when there is higher demand
 - When there is a need for more testing (e.g. prior to a release)
 - When there is an outage in the physical labs
 - To support an event (trade show, developer conference, etc.)
- Agree on capping policy in the community
 - May require assigning community lab managers that will be responsible for lab scaling
 - Will require a usage tracking tool in order to
 - Allow resource usage to be tracked and capped in order to control capital expanses
 - Perform capacity planning

Repeatability and ease of use

Repeatability

- Create lab blueprints, or "packages" that will be reusable and allow scaling out of a virtual lab or creating a new one efficiently
- Ease of use
 - The packages should enable spinning up a lab environment with a click of a button
 - The package should enable easy shutdown and deletion of resources to avoid excessive use of cloud resources
 - ONAP instances will be controlled by the ONAP Operations Manager
- Configuration management
 - The lab should be controlled by a configuration management system to ensure the right versioning, software patches, etc.
- Status tracking
 - There ONAP community should use a resource booking tool to allow for creating maintenance windows and block out times for demos, etc.

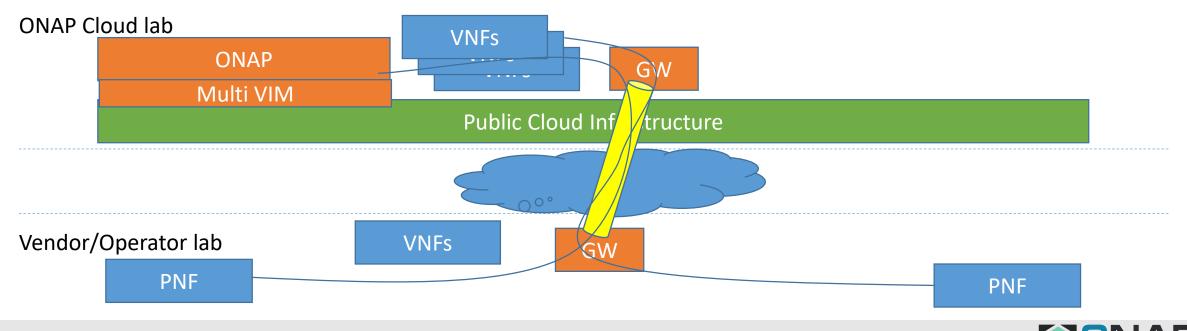
Security, licensing, access restriction

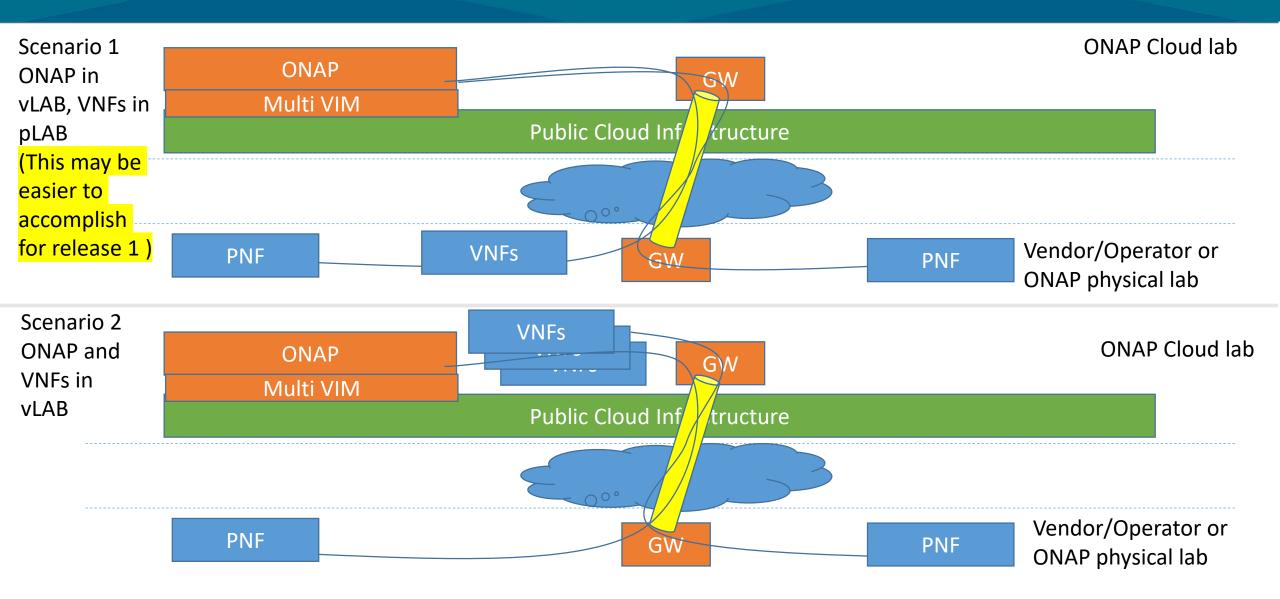

- In general, the virtual lab should be treated as any other lab when it comes to public access, security and licensing of VNFs.
 - It just happen to run on hardware provided by a public cloud. Everything on top of the hardware should look similar to the physical labs.
- Access and security
 - Should be restricted to community members and provided through standard mechanisms such as SSH jump servers and remote access VPN servers
 - The lab may provide "free and open to the public" access if required, but the same goes for any other physical lab
- Licensing
 - VNF vendors should provide "lab usage" licenses for their VNFs and are not required to provide licenses for "general public" usage
- Liability
 - There needs to be a clearly assigned responsible entity that will be in charge of running the lab, much like any other, physical lab.

Addressing the challenges

THELINUX FOUNDATION

- Running vendor VNF on public cloud
 - Running OpenStack (and later other VIMs) on the public cloud could provide a standard platform.
 - OpenStack may be run on bare metal servers or using nested virtualization (former has better performance, latter higher portability). VMWare may be a challenge (licensing is one).
 - Minimum requirement for the cloud is to support X86
 - ONAP may run directly on public cloud or on hosted OpenStack (ONAP should be OpenStack agnostic)
 - For practical reasons the virtual lab will not be able to host all possible version of OpenStack

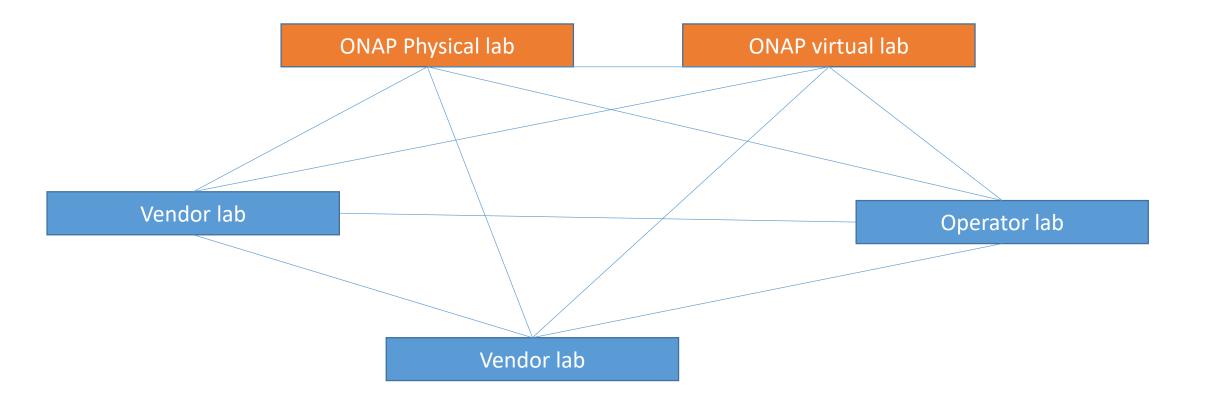



Addressing the challenges

- Connectivity to physical hardware
 - May be solved by using security gateways as part of the lab that will maintain secure tunnels with physical labs of the operators and vendors
 - The tunnels will be used for both VNF-PNF traffic and ONAP-PNF control traffic.
 - Some VNFs may run on the Vendor/Operator lab

THELINUX FOUNDATION

Possible usage scenarios



A mesh of labs

• Why stop at two?

THELINUX FOUNDATION

Resource tally sheet

Based on https://wiki.onap.org/display/DW/Lab+Resource

		Memory	Storage	Network	Qty
<u>Lab</u>					
Jump server	Xeon-E5-2658A 2.2GHz equivalent	256G	2T	2X10G	1
Security GW	Xeon-E5-2658A 2.2GHz equivalent	256G	100G	2X10G	2
ONAP					
ONAP	Xeon-E5-2658A 2.2GHz equivalent	256G	2T	2X10G	3
<u>OpenStack</u>					
Controllers	Xeon-E5-2658A 2.2GHz equivalent	256G	2T	2X10G	2
Compute	Xeon-E5-2658A 2.2GHz equivalent	256G	2T	2X10G	3

Public cloud requirements

- X86 based platform (e.g. not ARM, etc.) The majority of VNFs are only certified to run on X86
- Support for running KVM virtualization and OpenStack VIM
 - Advantage for bare-metal option as it will avoid the need for nested virtualization
- Support for overlay secure tunnels between VMs in the cloud and physical labs
 - E.g. IPSec or SSL
- Compute, storage and networking resources as specified in the previous slide
- SLA A committed reliability/resiliency of the provided cloud resources
- Usage tracking tool
- <More requirements to follow based on use case analysis>

Summary and next steps

- We identified several usages (CI/CD, integration, development, etc.) for a virtual lab
- We identified several scenarios (local VNFs, remote VNFs, etc.)
- Release 1 scope may be limited and with probably be focused on the scenario where VNFs are in a remote lab and only ONAP is running in a virtual lab.
- Next steps would involve:
 - finalizing the exact requirements This can only happen once the detailed use cases are agreed upon
 - Approaching cloud providers with a request for proposal that will include the requirements
 - Approving the virtual lab proposal

Backup (for future use)

Cost assessment

• Annual cost estimate

	Minimum (steady state)	Max (burst)
Compute		
Network		
Storage		
Personnel		
???		
Total		

