

ONAP Command-Line
Interface (CLI)
One command to command whole ONAP !

Kanagaraj.Manickam@Huawei.com

License

Copyright 2017 Huawei Technologies Co., Ltd.

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

ONAP Command-Line Interface (CLI)

ONAP cli community developed a model based Command-Line interface (CLI) framework, which

facilitates vendors to implement the CLI for any given RESTful services by writing YAML based template

and mostly relives vendor from implementing and maintaining the CLI using any programming language.

It also provides a auto-discoverable plug-in architecture, which helps vendor to implement CLI command

as a plug-in, when CLI model schema is not adequate for implementing a given command.

ONAP Command-Line Interface (CLI)
Both in Telco and enterprise industries customer would prefer the commands over GUI on many

situations such as automation, CI, etc. And ONAP spans across both kinds of these customers, so this CLI

project provides required commands for ONAP.

onap CLI is an console based application helps to operate ONAP from Microsoft windows or Linux

Operating system. It’s one command to command the whole ONAP

Framework Features
1. Auto-discover any commands which are plugged in the CLI framework.

2. Provides YAML based model schema to create CLI commands without writing code.

3. Provides man page for each command automatically with option --help.

4. It is on-par with other existing commands in terms of exit code. I.e. on success it set exit code 0

otherwise 1.

5. Supports multiple output format such as tabular format, csv with option –format.

6. Provides --debug option to find the HTTP request and response executed as part of the

command.

7. Every command can print the results in portrait mode or landscape mode, which is completely

controlled by the vendor, who develops the given command.

8. Provides --long option to control the set of result attributes. By default every command will

provide the only mandatory result attributes marked by vendor.

9. Provides –no-title option to skip of the title from the result. This would be useful in case of

automation where the format option is given with csv.

10. Each command is provide with –version to report the service name and version it uses.

11. In case of error, it would print the specific error code, error message and corresponding http

status code reported from the service.

12. After installation, user can add additional commands by following instructions provided here.

For any help, please mailto:onap-discuss@list.onap.org

mailto:onap-discuss@list.onap.org

Developer guide for implementing a command
CLI framework provides following option to implement a command

1. Command as a plug-in

2. Command as a YAML based model schema

Command as a plug-in
To implement a command as a plug-in:

1. Create a new maven jar project

2. Add dependency to the maven onap cli framework as below

 <dependency>
 <groupId>org.onap.cli</groupId>
 <artifactId>cli-framework</artifactId>
 <version>1.1.0-SNAPSHOT</version>
 </dependency>

3. Refer schema section and create the schema without http section in it. And place it under

resources folder. (it should be in class path). Say its named as onap-sample-test-schema.yaml

4. Implement the command by using org.onap.cli.fw.OnapCommand as base class and add

command name and schema file location using the annotation given below. Also Implement the

abstract method run() in the new plug-in.

import org.onap.cli.fw.OnapCommandSchema;
import org.onap.cli.fw.OnapCommand;

@OnapCommandSchema(name = "user-create", schema = "onap-sample-test-schema.yaml")
public class OnapSampleTestCommand extends OnapCommand {
 @Override
 protected void run() throws OnapCommandException {
 //TODO: implement the command
 }

5. Add this project under cli/plugins project as maven module.

NOTE:

In ONAP, all common services commands under cli-plugin-common-service projects, are implemented in

this approach, and can be used as reference.

This approach is very useful if the given command is not possible to implement using the YAML model

schema explained in next section. Some commands like csar upload requires custom code to handle it

and this approach would be more useful.

Command as a YAML based model schema
To implement a command using YAML model schema:

1. Refer schema section and add the new schema file for a command under the folder onap-cli-

schema.

NOTE:

In ONAP most of the commands are provided using this approach. Please refer the commands provided

for catalog services in cli-plugins project.

How to build and run CLI?

Follow the steps given below for building the CLI and run it:

1. Git clone the CLI project from ONAP gerrit
2. Run maven build and go to deployment/target/deployunzip directory
3. Set the following environment variables

a. ONAP_CLI_HOME to above extracted folder say deployment/target/deployunzip.

b. ONAP_USERNAME to username of ONAP. (currently set to some junk value)

c. ONAP_PASSWORD to password of the user provided in ONAP_USERNAME. (currently set to some
junk value)

d. ONAP_MSB_URL to MSB url (currently set to some junk value)
 4. Run the command under $ONAP_CLI_HOME/bin/onap.sh . (currently only schema related commands
are supported and micro-service commands are provided as samples)

ONAP Command model Schema 1.0
ONAP release provides the 1.0 version of schema for writing the CLI and has following sections.

Schema version
Every command written in YAML template should have the following entry at the first line

onap_cmd_schema_version: 1.0

This schema version supports to define CLI inputs, results, name, description and realization of the

command using http.

Name
Every command should be provided with unique name, which would be self explanatory like vim-create

which means this command will be used to create a VIM. So the corresponding YAML entry would look

like as below:

name: vim-create

Description
It helps to provide more details about the command for which the YAML is written. It could have details

like pre-requisites, description about the command, limitations ,etc. So the corresponding YAML entry

would look like as below:

description: Helps to register a VIM in ONAP ESR service.

Service
Every ONAP command would use the corresponding the ONAP service REST API for realizing it. In ONAP,

every service is auto-registered in the Micro-service Bus (MSB) and user could query the MSB for finding

endpoints for a given service and its version. This concept is modeled in the YAML schema, where every

command could mention the required service name and version. For example, vim-create command

would mention the service entry as below:

service:

 name: extsys

 version: v1

 no-auth: true

In ONAP, every services other than, while no-auth option provided above would help to by-pass the

authentication in following scenarios:

1. Some features like micro-service discovery commands do not require authentication

2. During the command schema development, this option would help to disable the authentication

on need basis.

Parameters
Every CLI command required set of parameters for proving the inputs for running it. Each input is

modeled as Parameter and is having following properties. And there are two kinds of input parameters.

One is provided with short/long option while another is provided with option is called positional

argument. CLI model schema supports both the types.

S.No Property Name Details By Default
1 name Name of the attribute such as vim-name NA

2 description Details of the property such as help message,
example, pre-requisites.

NA

3 type Property type. Followings are supported
1. long

String.

2. string
3. json
4. yaml
5. array
6. map
7. url
8. bool

For JSON type, the input value could be provided
either directly or using local file path.
Array and map types helps to provide the same
option multiple times as some commands required
it.

4 short_option Short option name and is always with only one
letter

NA

5 long_option Long option name and should be similar to the
name.

NA

6 is_optional To mark the given property as mandatory or
optional.

false

7 is_secured To mark the given property as secured such as
password. These kind of propertys will be not
reported with *****

false

NOTE: when both short_option and long_option is absent, its considered as ‘positional argument’ and

user could provide these kind of parameter values without preceding option name.

Example parameter used for command vim-create would be as below:

 - name: password

 description: ONAP VIM password

 scope: short

 type: string

 is_secured: true

 short_option: j

 long_option: password

 is_optional: false

 is_secured: true

NOTE: In case of url type, if user wants to provide in URI format, it is recommended to skip the

beginning forward slash (/). Its take care by framework as there is some issue.

Results
Command usually reports the outputs in tabular format in portrait or landscape mode. For example, list

kind of commands would print the outputs in landscape mode while create kind of commands would

print the results in portrait mode. To support this feature, CLI model schema provides below attribute:

results:

 direction: portrait

Attributes

The output results are capture using set of attributes and each attribute is having the following

properties defined in CLI model schema.

S.No Attribute Name Details By Default
1 name Name of the attribute such as vim-name NA

2 description Details of the attribute such as help message,
example, pre-requisites.

NA

3 type Attribute type. Followings are supported
1. long
2. string
3. json
4. yaml
5. url
6. bool

String.

4 Scope Every attribute is included in the command output
based on the defined scope. There are two types 1.
Short 2. Long. By default all attributes defined with
short scope will be reported in the command
output. To print the long scoped attributes, --long
option should be provided while executing the
command

short

Example result used for command vim-create would be as below:

results:

 direction: portrait

 attributes:

 - name: id

 description: ONAP VIM ID

 scope: short

 type: string

http
This section captures the required details for executing the command by communicating with given

service mentioned in the service section. And is applicable only for the http command.

Request

Request section helps to add following details.

S.No Attribute Name Details Optional
1 url Service URI. It just holds the corresponding URI

mentioned in the swagger definitions.
NOTE: Don’t add basepath in this url. Its
automatically discovered by framework using the
service name and version provided as part of CLI
model schema.

NO

2 method HTTP method like POST, GET, etc NO

3 headers List of headers name and values. YES

4 queries List of queries name and values YES

5 body Body json. YES (for DELETE its
optional)

Parameter Macro

Here a macro in the form of ${parameter-name} and when the command is executed, it is used to feed

the values given in the input parameters into any of the http request attributes mentioned below. And

this macro could be used in any of the attributes mentioned in above table.

Following example shows the sample http request section for vim-create command with marco used in

body section.

 uri: /vims

 method: POST

 headers:

 queries:

 body: '{"name":"${name}","vendor":"${vendor}","version":"${vim-

version}","description":"${description}","type":"${type}","url":"${url}","userName":"${username}","pass

word":"${password}","domain":"${domain}","tenant":"${tenant}"}'

success_codes

This section captures the list of http status code, which is defined in the service swagger definitions.

Framework will check for this status code from http response and will fail the command otherwise.

For example, vim-create command would have the following success codes:

success_codes:

 - 201

 - 200

result_map

CLI model schema provides this section to fetch the data from the http response returned from the

service and assign the attributes defined in the results section. It is an map of attribute name and its

corresponding value.

CLI framework also provides below macros for fetching value from response dynamically

Body Marco

Body marco is provided in the form of $b{json-path} , Here the json-path is the JPATH used to pointer to

the given attribute in the response body. More details on json-path is available here.

For example, vim-create command would have the following sample attributes, for a sample response

provided in the sample_response section:

result_map:

 id: $b{$.vimId}

 name: $b{$.name}

 vendor: $b{$.vendor}

Header Macro

CLI framework also provide another header macro in the form of $h{header-name} to fetch the data

from the given response header-name in service response.

sample_response:

 This section helps to capture any sample data for a given http aspects like sample response body. It will

act as reference to understand the the result_map easily and is more optional.

Below is the sample response for vim-create command:

sample_response:

body:{"serviceName":"test","version":"v1","url":"/api/test/v1","protocol":"REST","visualRange":"1","lb_

policy":"hash","nodes":[{"ip":"127.0.0.1","port":"8012","ttl":0,"nodeId":"test_127.0.0.1_8012","expirati

http://goessner.net/articles/JsonPath/index.html#e2

on":"2017-02-10T05:33:25Z","created_at":"2017-02-10T05:33:25Z","updated_at":"2017-02-

10T05:33:25Z"}],"status":"1"}

Reference
 wiki https://wiki.onap.org/display/DW/Command+Line+Interface+Project

 gerrit http://gerrit.onap.org/r/cli

https://wiki.onap.org/display/DW/Command+Line+Interface+Project
http://gerrit.onap.org/r/cli

