

Configuration Persistence Service

Release 8 (Honolulu) Requirements Presentation
 Oct 2, 2020 version 10

NOKIA Ben Cheung (Nokia)
NOKIA Marge Hillis (Nokia)
SATAT Shankar N K (AT&T)

SATET Ted Johnson (AT&T)

SATET Claudio Gasparini

ERICSSON

Zu Qiang (Ericsson)

ERICSSON Michela Bevilacqua (Ericsson)

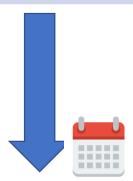
ERICSSON Toine Siebelink (Ericsson)

ERICSSON Finnerty (Ericsson)

ERICSSON Jacqueline Beaulac (Ericsson)

ERICSSON ■ Rishi Chail (Ericsson)

Pawel Slowikowski (Samsung)


Swami N (Wipro)

Bell Bruno Sakoto (Bell Canada)

verizon Fred Feisullin (Verizon Wireless)

R8 Requirements Presentation

TIME	AUG 17, 2020 CPS REQUIREMENTS SubComm AGENDA
20 min	Overview of CPS & Agenda – Introduction to CPS
15 min	Model Driven CPS Proof of Concept (PoC) — Overview of the Model-Driven CPS PoC for R7
5 min	R8 & Beyond Roadmap — Model Driven Proof of Concept (PoC) in R7, way forward in R8 Honolulu, New plan & roadmap
10 min	Use Cases using CPS Database – Overview of CPS Applications
5 min	Questions & Answers – Q&A

TIME	Q&A Session Post-Session
-	Follow-up questions – Follow-up meetings at CPS Team Call (Fridays)

Overview of Configuration Persistence Service

Architecture S/C

Overview

Technical Flows

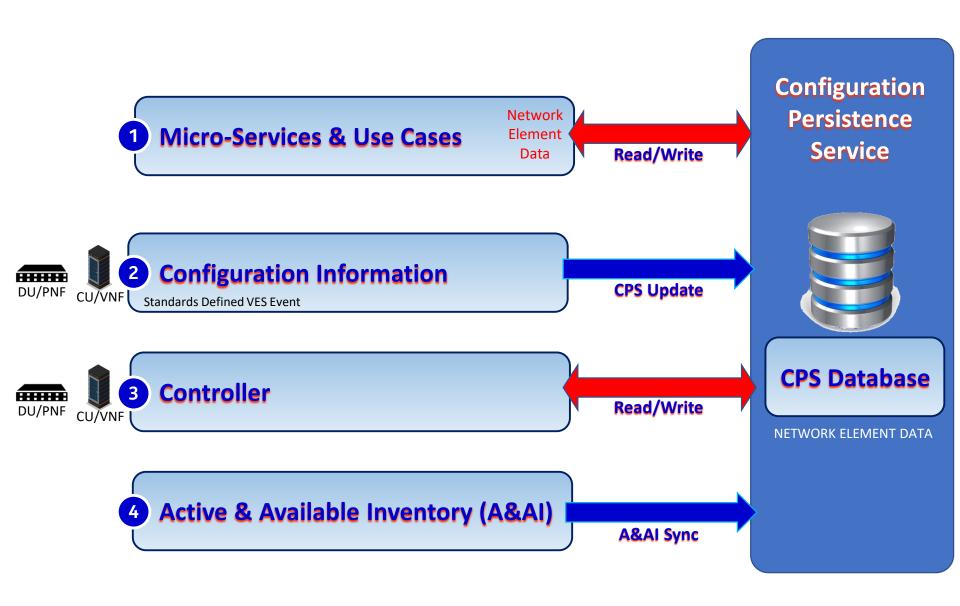
Configuration Persistence Service in R8

Executive Summary - The Configuration Persistence Service (CPS) is a *real-time service* that is designed to serve as a data repository for Run-time Network Element (configuration) data that needs to be persistent applicable to multiple domain (RAN, Transport, and Core). This was explored as a R7 PoC. *Focus on storing run-time DATA RELATED to NETWORK ELEMENT instances.* In R8, this is being proposed as a <u>stand-alone project</u>.

Business Impact - The ability for service operators to <u>visualize and manage network element</u> <u>data in a network (PNFs, VNFs, and logical constructs)</u> with ONAP is a critical business function because they are key Life Cycle Management (LCM) and OA&M operations. The project has business impacts to enhance the operation of data-handling within ONAP by providing efficient data layer services.

Business Markets - This project applies to any domain (wireless, transport, optical, and wireline) that ONAP may manage. It is not a market or geographical specific capability. It is expected that scaled ONAP installations such as Edge & Core ONAP deployments will also deploy the database across each installation. **Funding/Financial Impacts** - This project represents a large potential Operating Expense (OPEX) savings for operators because of the ability to configure networks saving time and expenses.

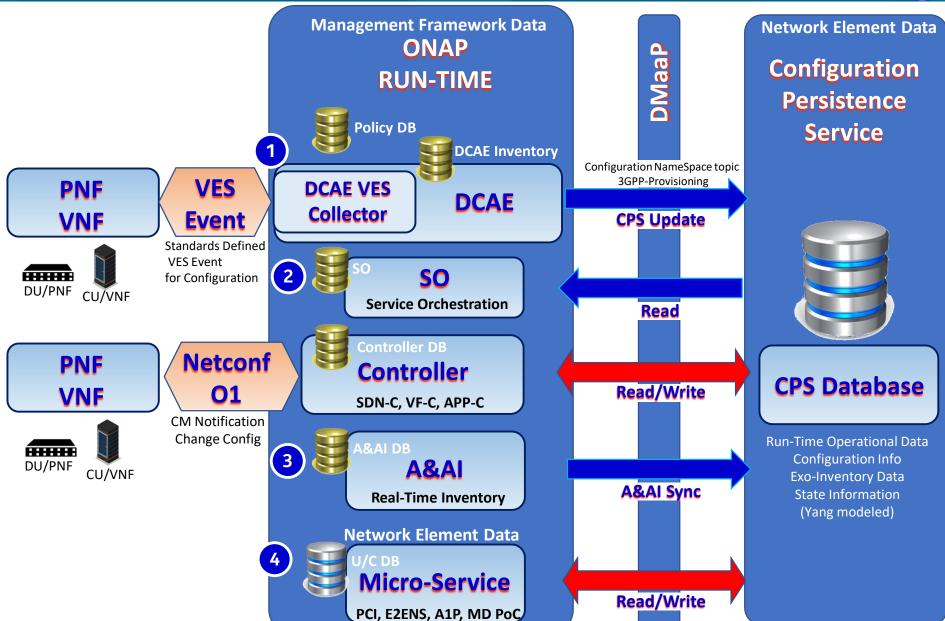
! VNF


¹ Validation

CCSDK

OSS / BSS / Other Orchestration & Management Design Legend Operations **ONAP Operations Design-Time Run-Time Manage ONAP** Manager (OOM) Interfaces VVP VNF SDK O&M Dashboard (VID) **Use-Case UI External APIs** CLI Portal **Control Loop Policy** Service **Active & Available Service Design & Creation** External System Shared **Automation (CLAMP)** Orchestration (SO) Framework Inventory (AAI) Register (ESR) Services (SDC) AuthN/AuthZ (AAF) Service/xNF Design Microservice Bus (MSB) / Message & Data Routers (DMaaP) xNF Onboarding Optimization (OOF) Workflow Designer Logging Correlation Engine Infrastructure Virtual SDN **Application** Audit (POMBA) Controller Design Studio (Holmes) Adaptation **Function** Controller Controller Multi-Site State (MUSIC) DCAE Design Studio **Data Collection** (Multi-VIM/ Controller (APPC) (SDNC) **Analytics &** & Others ... Cloud) (VFC) Catalog **Events (DCAE)** Configuration **Persistence Service External Systems Third Party Controllers EMS sVNFM** Environment **Network Function Layer VNFs** Managed **PNFs** Hypervisor / OS Layer OpenStack **Public Cloud ONAP Shared Utilities** Commercial VIM **Kubernetes** MPLS IP Model Utilities Public Private Private **TOSCA Parser** Edge Cloud Cloud DC Cloud

Configuration Persistence Service (CPS)



Configuration Persistence Service (CPS)

Configuration Persistence Service (CPS)

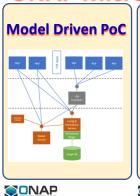
Network Element Data Application Parameters Configuration Parameters

CPS Update

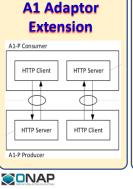
GUI Access

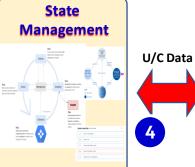
Network Element Data

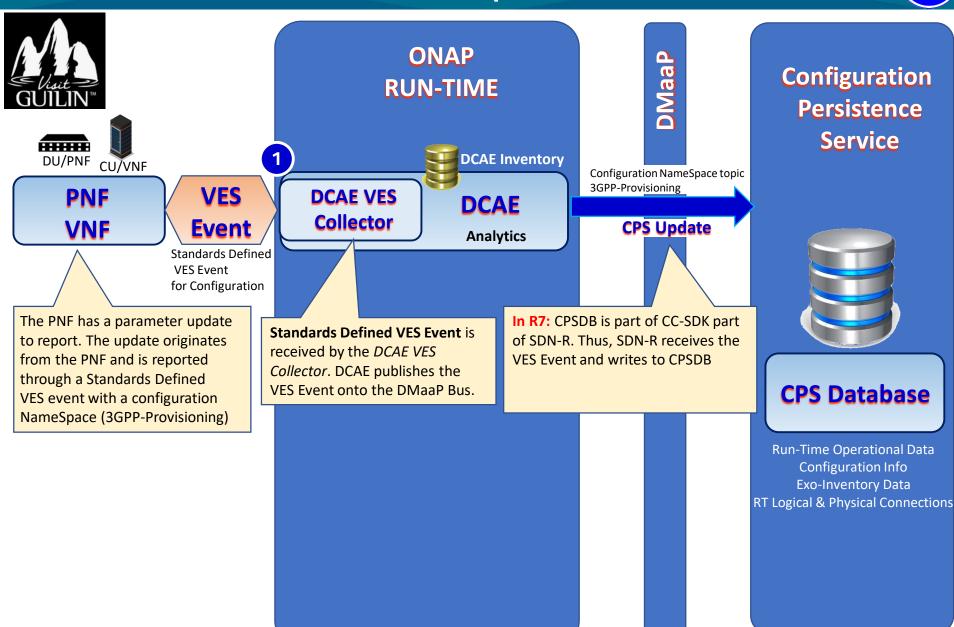
Configuration
Persistence
Service


CPS Database

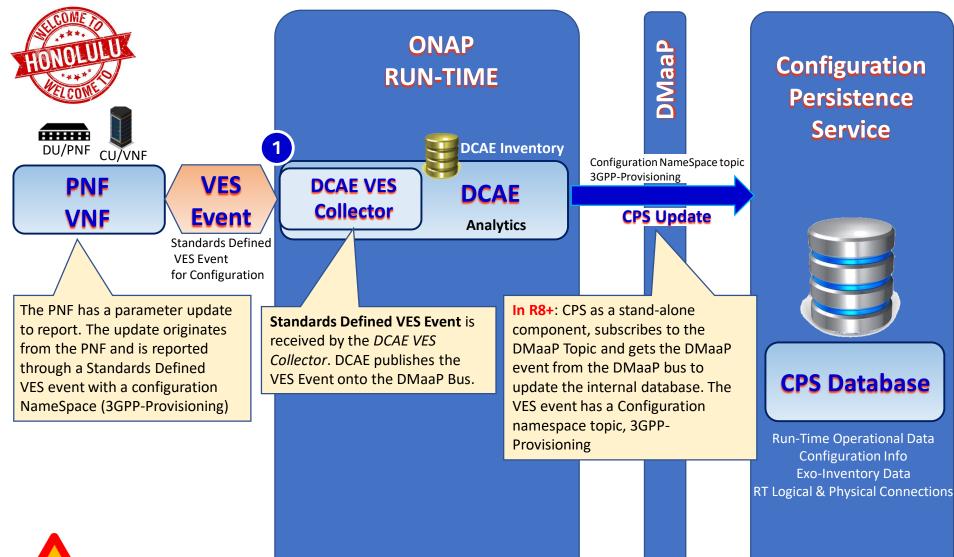
Run-Time Operational Data Configuration Info Exo-Inventory Data State Information




ONAP Micro-services, POCs & Use Cases



CPS READING: PNF Reports StndDef VES



CPS READING: PNF Reports Configuration

UNDER

Data Persistency Service (Run-Time View)

DMaaP

Configuration
Persistence
Service

(1) During Network setup "getall" retrieves from A&AI the ENTIRE A&AI graph. Used to setup the initial view of CPS (2) Updates additions/deletions of xNFs. "AAI-Event" (operation Addition / delete)

In R7 PoC: "getall" A&AI update, individual A&AI update
In R8+: CPSDB is a stand-alone component. Performs "getall" A&AI update and atomic A&AI update.
Atomic "updates" from A&AI add/remove of xNF is published by A&AI as an update on DMaaP bus

CPS Database

Run-Time Operational Data
Configuration Info
Exo-Inventory Data
RT Logical & Physical Connections

Inventory, Listener

A&AI

A&AI Sync

CPS WRITING: Micro Service Update

ONAP RUN-TIME

DMaap

In R7 PoC: CPSDB is in CC-SDK (part of SDN-R). Thus, SDN-R receives the

VES Event and writes to CPSDB

In R8+: CPSDB is a stand-alone

the DMaaP topic and gets the

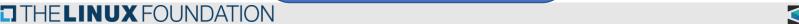
update itself.

component. CPSDB subscribes to

DMaaP event off the DMaaP bus to

Configuration
Persistence
Service

CPS Database


Run-Time Operational Data Configuration Info Exo-Inventory Data RT Logical & Physical Connections

A Micro-Service, for example OOF/SON/PCI determines that an update is needed to CPSDB from operation/algorithm. It publishes to the DMaaP bus an update event.

Micro Service
OOF/SON/PCI

Read/(Write)

CPS WRITING: From Controller SDN-R

The Controller (SDN-R) also sends a message to the xNF to update the parameter. This may

be done via NetConf/O1/Ansible

ONAP RUN-TIME

SO, Policy, or Control Loop has determined a parameter update is needed to the xNF. The Controller (SDN-R) eventually gets the configuration update. SDN-R publishes to the DMaaP bus an update event.

DMaaP

Configuration
Persistence
Service

E

In R6/R7: CPSDB is in CC-SDK (part of SDN-R). Thus, SDN-R receives the VES Event and writes directly to CPSDB

Read/Write

DU

PNF

VNF

1

Netconf

01

Ansible, Chef

CM Notification

Change Config

Controller DB

Controller

SDN-R, VF-C, APP-C

CPS Database

Run-Time Operational Data Configuration Info Exo-Inventory Data RT Logical & Physical Connections

xNF would may send a CMNotify unless xNF configured to suppress event on ONAP origination

Controller (SDN-R) gets an ACK back from the xNF that the parameter change was successful.

CPS WRITING: From Controller SDN-C

DU/PNF

The Controller (SDN-C) also sends a message to the xNF to update the parameter. This may be done via NetConf/O1/Ansible

Netconf **PNF** 01 VNF

> **CM Notification Change Config**

xNF would may send a Standards Defined VES unless xNF configured to suppress event on ONAP origination

ONAP RUN-TIME

SO, Policy, or Control Loop has determined a parameter update is needed to the xNF. The Controller (SDN-C) eventually gets the configuration update. SDN-C publishes to the DMaaP bus a configuration update event.

DMaaP

R8+ The configuration & standards service as a stand-alone component subscribes to the DMaaP topic and gets the DMaaP event off the DMaaP bus to update the internal database. A configuration namespace topic is used, 3GPP-Provisioning

Configuration Persistence **Service**

CPS Database

Run-Time Operational Data Configuration Info Exo-Inventory Data RT Logical & Physical Connections

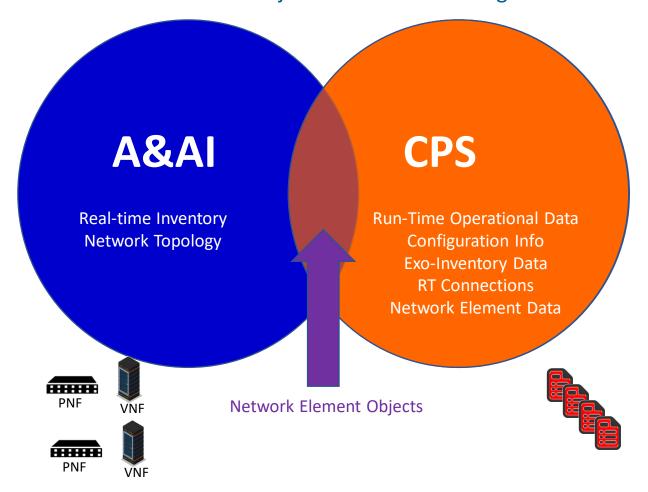
Read/Write

Configuration NameSpace topic **3GPP-Provisioning**

Controller (SDN-C) gets an ACK back from the xNF that the parameter change was successful.

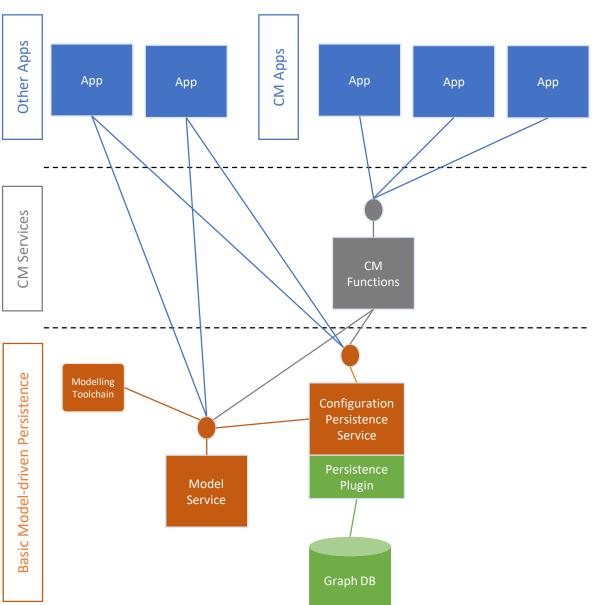
Controller DB

Controller


SDN-C, VF-C, APP-C

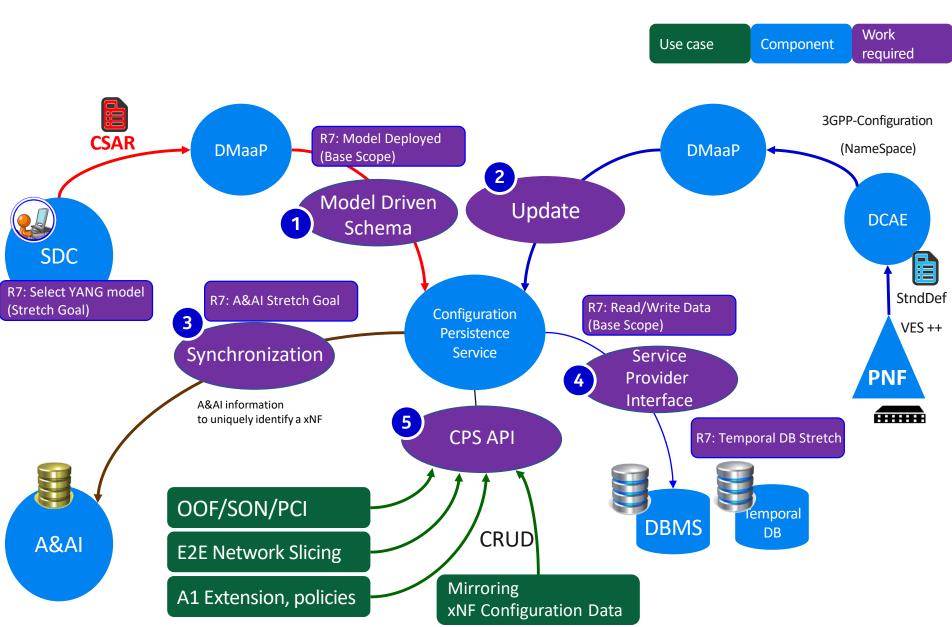
A&AI vs CPS

Concepts – A&AI conceptually stores Real-time inventory view of connected and "topology" of xNFs that ONAP sees. CPS stores Network Element Data. A&AI and CPS overlaps because they both need to know about Network Element objects so that can managed & orchestrated.



R7 – Model Driven Configuration Persistence Service Proof of Concept

R7 Model Driven CPS PoC (Ericsson)



- Provide schema-less model-driven (type safe) access to data which is owned by applications or indirectly by network functions
 - Applications own their own subset of the data according to cloud native principles; in a separate logical or actual CPS instance
- Provide a model-driven specification for integrating external data sources
- Persisted data can be normalized or nonnormalized
- Supports bulk, incremental and attribute value change reconciliation. It is best suited to data that is hierarchical and/or highly connected.
- New model versions can be introduced onthe-fly to the model repository to allow for evolution of the management platform to support network function versions without the need for a software change
- The Model Service is populated in multiple ways
 - Network function models are automatically injected by the Design and Onboarding component when the software packages are onboarded to it
 - Models are discovered from the network functions on instantiation
 - Application-specific models are injected by the App Manager when the app is deployed

R7 Model Driven CPS PoC

R7 Model Driven CPS PoC Lessons Learned

- Demonstrate Create/read operations using YANG fragments against a CPS backed by very simple schema / schema-less repository
- Demonstrate ability to deploy / upgrade YANG fragments at runtime
- Demonstrate CPS behavior driven by YANG model
- Provide architecture vision and roadmap for a target architecture, supported use cases, non-functional requirements towards an ONAP Project
- Resolve key architectural Issues necessary for CPS as a stand-alone project
- Ascertain a sense of Performance and Capacity boundaries

R7 Model Driven CPS PoC Lessons Learned

Base : N/A (new code)

Main dependency: ODL Yang Tools 5.x (probably) https://javadoc.io/doc/org.opendaylight.yangtools

Design and Architecture discussions ongoing
 https://wiki.onap.org/display/DW/Issues+decisions+and+assumptions

8	1	MEDIUM	Existing Yang Parser	Is there an existing Yang Parser in ONAP an/or OpenDayLight that can be used for C&PS	No	
9	N/A	AGREED	Location of PoC Code	Dan Timony suggested to use and existing CCSDK repo, he mentioned ccsdk/features. As long as the PoC remains completely independent and doesn't affect delivery of existing artifacts in the same repo.		ccsdk/features, see https://gerrit.onap.org/r/c/ccsdk/features/+/110385 (awaiting approval)
10	N/A	AGREED	Common information model, Data lake and Access control	How will the CPS help with managing coupling between ONAP components that make use of data lake and common information model		We will start with Architectural Approach A in the PoC with the aim of fully supporting Architectural Approach C. I.e. access to the data lake will be conditional on permission granted by the data owner. In the PoC we will not implement the permission granting mechanism
11	4,5	MEDIUM	Transactional behavior	It needs to be clear to users the level of atomic operations supported by the CPS	Yes	

CPS Roadmap

June 207

CPS Roadmap & R6-R8 Plan

Configuration Persistence Service (CPS) Roadmap –

R6 Frankfurt

R7 Guilin

December,

2020

R8 Honolulu

CPS 1.0

R6 CPS

- CC-SDK/SDN-C solution
- Evolution of "ConfigDB"

Supporting R6 Use Cases:

SON/OOF/PCI U/C

CPS 1.1

■ R6 CPS Extensions

- Evolution of CC-SDK/SDN-C solution REQ322
- Supporting R7 Use Cases:
 - SON/OOF/PCI U/C
 - 5G E2E Network Slicing
 - A1 Policy extension (Ericsson)

Model-Driven PoC •

- Write "base" CPS
- Write NE Data
- Read NE Data
- Access Control

State Management PoC

 State Management PoC (BellCA) self-contained

CPS 2.0

- → R8 CPS stand-alone project proposal
 - Deprecate CPS 1.0 &1.1
 - Project proposals TSC/Architecture S/C
 - Setup Project Repo

CPS FUNCTIONALITY:

- Data Recovery
- Model Adaption (Dynamic Schema)

Legend:

RED text is CC-SDK/SDN-C solution
BLUE text is the PoC & stand-alone project

CPS Roadmap & R8-R10 Plan

June 2021

Configuration Persistence Service (CPS) Roadmap –

R8 Honolulu

R9 Istanbul

R10 Kyoto

CPS 2.0

R8 CPS stand-alone

project proposal

- Deprecate CPS 1.0 & 1 1
- Project proposals TSC/Architecture S/C
- Setup Project Repo

CPS FUNCTIONALITY:

- Data Recovery
- Model Adaption (Dynamic Schema)

Legend:

RED text is CC-SDK/SDN-C solution

BLUE text is the PoC & stand-alone project

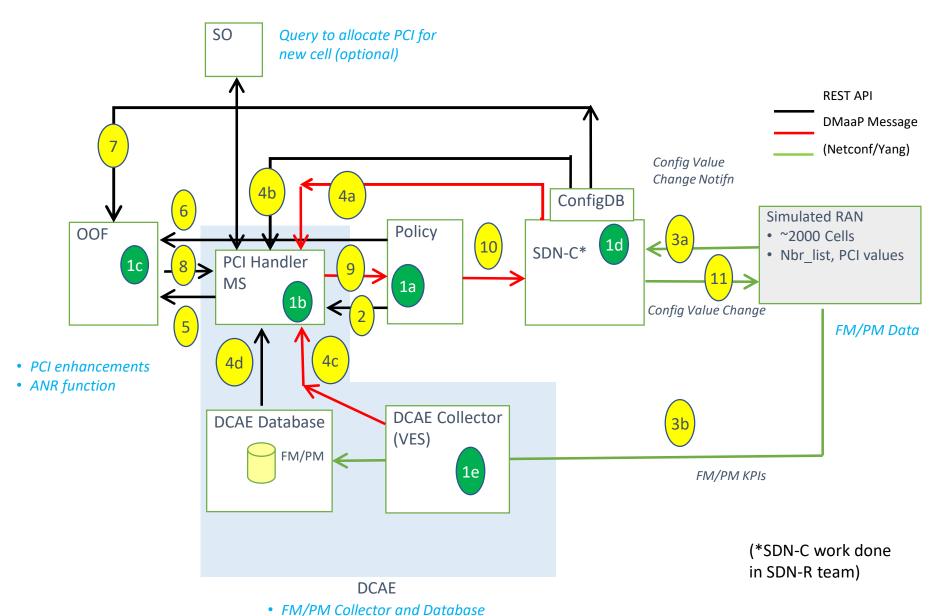
December, 2020

Rx (future) development

CPS FUNCTIONALITY:

- Data Auditing
- Topology Traversal
- Data History
- Roll-Back
- Database Backup
- Data Syncing
- Performance Optimization (Scaling)

Use Cases & Proof of Concepts


Proof of Concept

CPS Use Cases and Proof of Concepts in R8

5G USE CASE	DESCRIPTION
OOF - SON (5G)	Optimization and SON functions for 5G RAN. Self-optimization, Self-Healing, Self-configuration.
NETWORK SLICING (5G Use Case)	Network Slicing defines Slices for 5G RAN systems. Network Slicing is a long-lead (multi-release) development. (will be presented in its own lecture at the Virtual Face to Face)
MOBILITY STANDARDS HARMONIZATION/ A1 adapter	A1 adapter: Enhancing the A1 adapter/interface capabilities in ONAP to manage A1 Policies, support multiple A1 targets in the RAN and multi-version A1 interface for different A1 targets, introduce secure TLS communication.
STATE MANAGEMENT POC	Bell Canada led PoC for State tracking and State management using CPS Integration with CPS (as a platform). Have the State management S/W now work with CPS using available swaggers/APIs

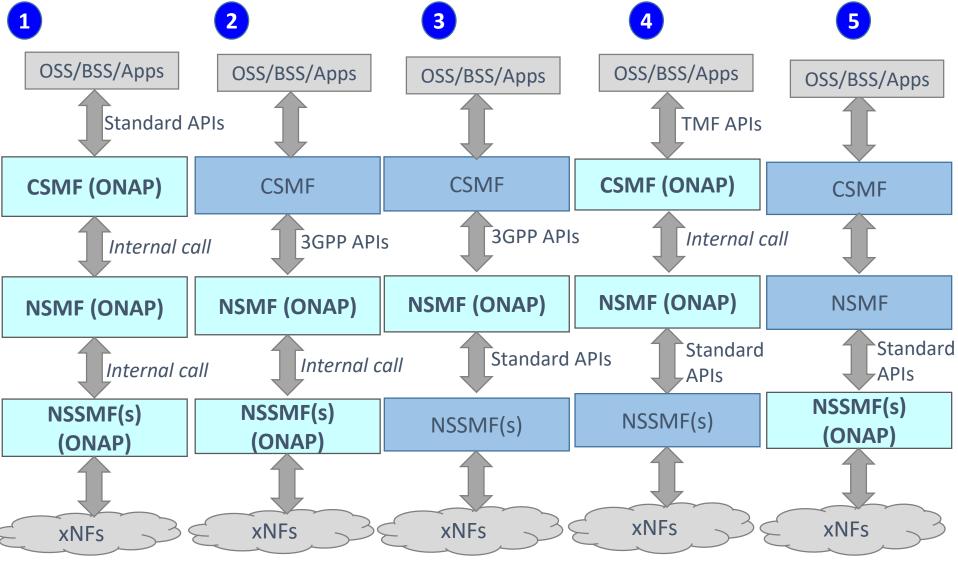
OOF / SON / PCI Use Case

OOF / SON / PCI Use Case

- Config DB (MariaDB) used by PCI-H-MS (step 4b) and OOF (step 7)
- Query API (swagger JSON spec) exposed to other ONAP modules
- cellId needs to be globally unique (assumed eCGI) and align with ONAP YANG model, ORAN, 3GPP
- pnf-name indicates netconf server to be used for interactions regarding cells
- Pnf object (pnf-name, pnf-id) to be aligned with A&AI (A&AI/ConfigDB interaction to be finalized in Dublin release)

Cell (Object)	
Attribute	Format
networkId	string
cellId	string
pciValue	uint64
nbrList	list of cellId
lastModifiedTS	timestamp
pnf-name	string

pnf (Object)


Attribute	Format
pnf-name	String
cells	List of cellID's
lastModifiedTS	timestamp

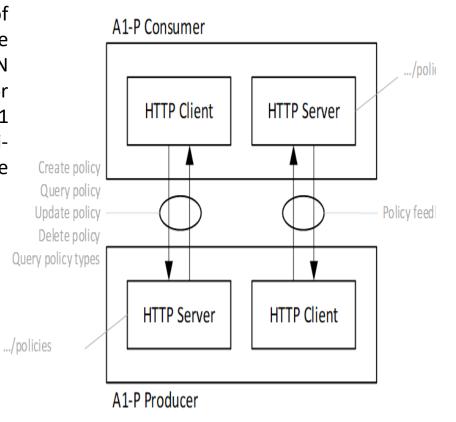
ConfigDB API

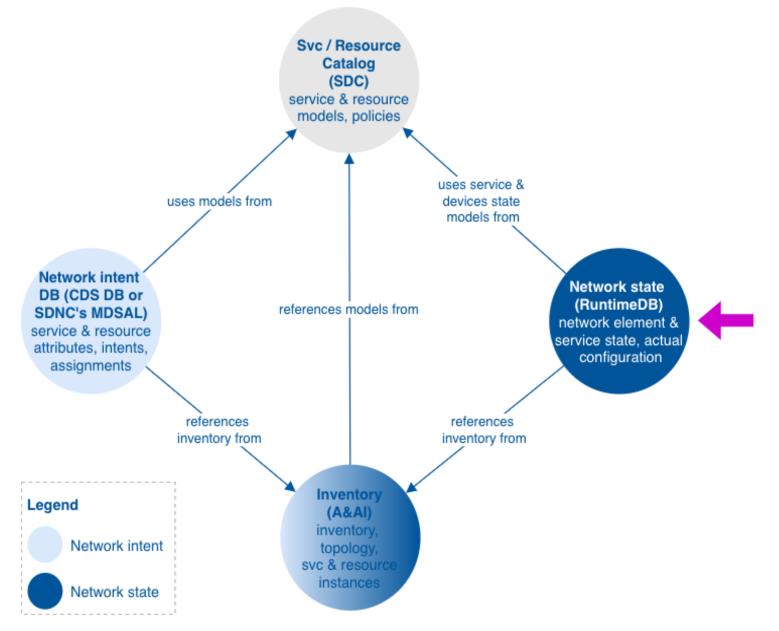
API	Input	Output
GET cellList	networkld, ts	List of cellIds
GET PCI	cellid, ts	PCI Value
GET nbrList	cellid, ts	List of cellIds and their PCI values
GET pnf- name	cellID, ts	pnf-name

End to End Network Slicing Use Case

3rd party component

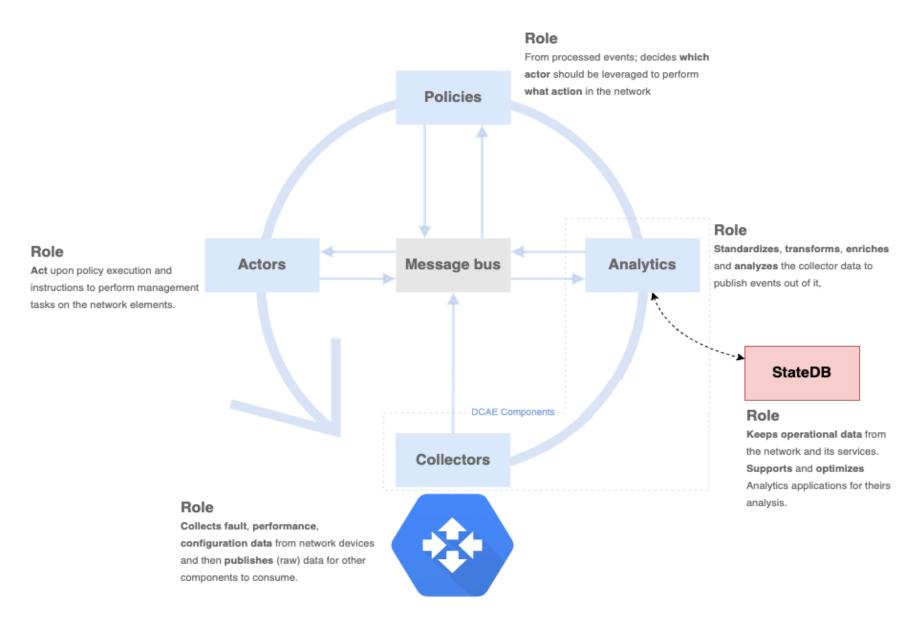
End to End Network Slicing Use Case


NetworkSlice	Network Slice NRM	operationalState
NetworkSlice	Network Slice NRM	administrativeState
NetworkSlice	Network Slice NRM	serviceProfileList
NetworkSlice	Network Slice NRM	networkSliceSubnetRef
NetworkSliceSubnet	Network Slice NRM	operationalState
NetworkSliceSubnet	Network Slice NRM	administrativeState
NetworkSliceSubnet	Network Slice NRM	nsInfo
NetworkSliceSubnet	Network Slice NRM	sliceProfileList
NetworkSliceSubnet	Network Slice NRM	managedFunctionRef
NetworkSliceSubnet	Network Slice NRM	networkSliceSubnetRef
ServiceProfile	Network Slice NRM	serviceProfileId
ServiceProfile	Network Slice NRM	sNSSAIList
ServiceProfile	Network Slice NRM	pLMNIdList
ServiceProfile	Network Slice NRM	perfReq
ServiceProfile	Network Slice NRM	maxNumberofUEs
ServiceProfile	Network Slice NRM	coverageAreaTAList
ServiceProfile	Network Slice NRM	latency
ServiceProfile	Network Slice NRM	uEMobilityLevel
ServiceProfile	Network Slice NRM	resourceSharingLevel
ServiceProfile	Network Slice NRM	sST
ServiceProfile	Network Slice NRM	availability
SliceProfile	Network Slice NRM	sliceProfileId
SliceProfile	Network Slice NRM	sNSSAIList
SliceProfile	Network Slice NRM	pLMNIdList
SliceProfile	Network Slice NRM	perfReq
SliceProfile	Network Slice NRM	maxNumberofUEs
SliceProfile	Network Slice NRM	coverageAreaTAList
SliceProfile	Network Slice NRM	latency
SliceProfile	Network Slice NRM	uEMobilityLevel
SliceProfile	Network Slice NRM	resourceSharingLevel


A1 Policy Extension ORAN-ONAP Harmonize

Executive Summary - This requirement enhances the A1 adapter/interface capabilities provided in Rel as part of 5G/ORAN & 3GPP Standards Harmonization requirement (REQ-38). O-RAN has defined A1 interface specification in the context of the management of 5G RAN elements to provide intent based policies for optimization of the RAN network performance. Planned enhancements for Rel 7 include additional support for managing A1 Policies, multiple A1 targets in the RAN, multiversion support for different A1 targets, and secure TLS communication.

State Management PoC (Bell Canada)



State Management PoC (Bell Canada)

State Management PoC (Bell Canada)

state-c	state-controller State Controller		
GET	/states retrieveByFilter		
POST	/states add		
GET	/states/{timestamp} retrieve		
DELETE	/states/{timestamp} delete		
GET	/states/search retrieveByQuery		

APPENDIX

Benjamin Cheung

Access, Syncing, Indexing Runtime Config DB

ACCESS TO CPS Database (READ/WRITE):

READ ONLY - Run-Time parameters can be READ by any ONAP platform component and any ONAP plug-in. Examples of ONAP platform components are A&AI, SDC, SDNC etc.

READ/WRITE - Parameters can be READ/WRITE from Controllers, DCAE (future), VES Collector/DMaaP, A&AI, Policy/CLAMP (future) and other components with permission settings.

DEFAULT - SO (future), DCAE, A&AI (indirectly), Controllers (CDS, APPC, SDNC) will have default read/write access to CPS Database

DEFINABLE - Other components will have default read-only access to Configuration Persistence Service but can be given Read/Write access on a per record basis.

SYNCING NEW XNF ADDED or DELETED (A&AI):

ELEMENT SYNC - Software keeps the A&AI elements with the elements in the RunTime Config DB in Sync. When the network first being established, a *GetAllPNFs* function from A&AI can be used on startup.

A&AI - A&AI is still the master of valid entities in the network and provides a dynamic view of the assets (xNFs) available to ONAP

CPS Database - The CPS Database is a master of the associate (exo-inventory) data associated with the entities.

DYNAMIC VIEW - When a xNF appears or is removed from the system, CPS Database records will be added/removed based on A&AI entries.

LOGIC - When a xNF appears is removed there is logic to determine how and when something is to be updated. There is some intelligence to know what elements of update.

INDEXING:

INDEXING - Data Records will be indexed by xNF (VNF, PNF, ANF). It would be an objective to have a similar indexing mechanism as A&AI. May also need an index to be a logical object ID.

RETRIEVAL - How are data records retrieved efficiently. This relates how the records are indexed.

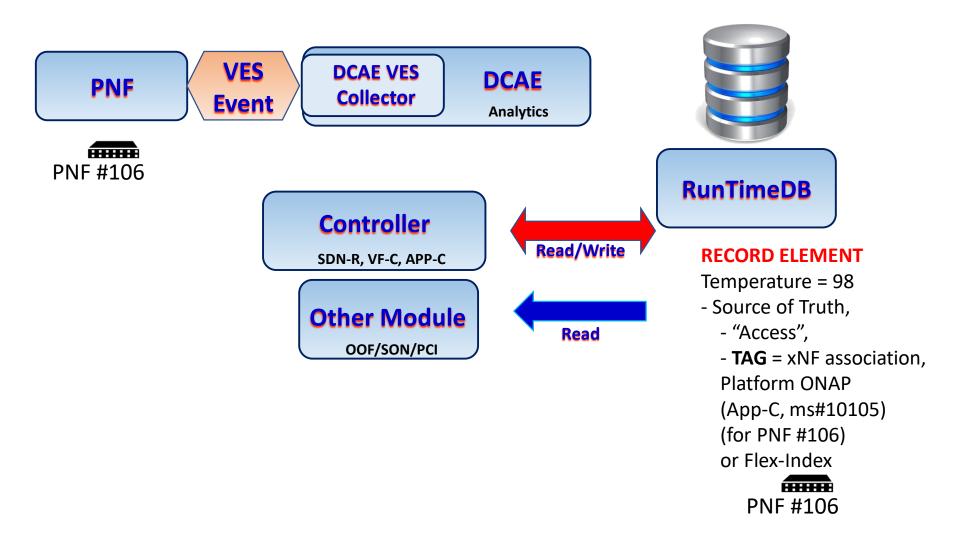
Dependencies vs Scope

<u>DEPENDENCIES</u> – need to operate

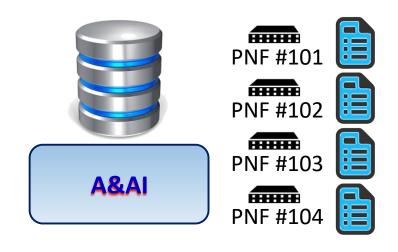
SDC Yang Model (to load schema)
ability to process & translate yang models into schemas
AAF (intra-ONAP security)
Database implementation for Data Persistency
(for example MariaDB)

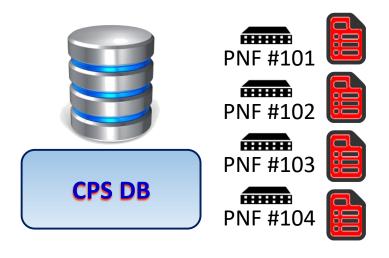
DMaaP (some use cases to work / indirect dependency)

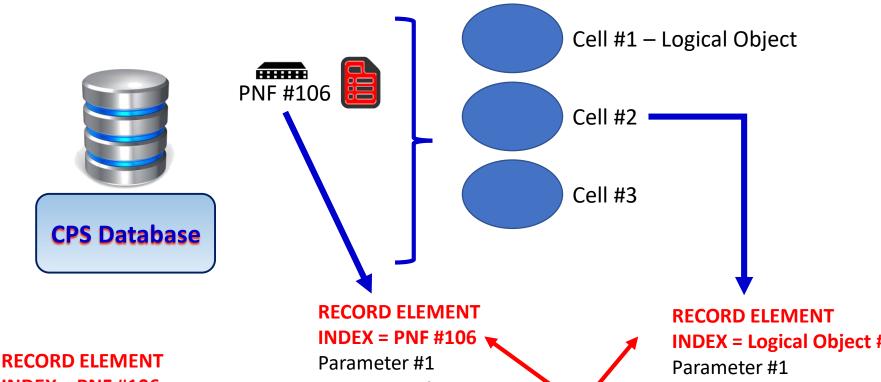
SCOPE


CPS Database

RECEIVE INFORMATION
WRITE INFORMATION
PUBLISH CHANGES
REFERENTIAL INTEGRITY
INGEST PACKAGES
LOGICAL OBJECTS
ASSOCIATIONS
CARDINALITY RULES
LINKING RESTRICTIONS
SYNCHRONIZATION
DATA INTEGRITY & RECOVERY




Configuration Persistence Service (Run-Time)



A&AI correlated/Index to RunTimeDB Publish changes in A&AI, notification on DMaaP

Indices into Configuration Persistence Service may also use Flex-Index (such as CellID)

CPS Database (Run-Time View)

INDEX = PNF #106

Parameter #1

Parameter #2

Parameter #3

Logical object, Cell #1

Cell Parameter #1

Cell Parameter #2

Cell Parameter #3

Parameter #2 Parameter #3 State Info X.733 **Associations** { Logical Object #111 Cell #2 }

Cardinality Rules

Linking Restrictions

INDEX = Logical Object #111

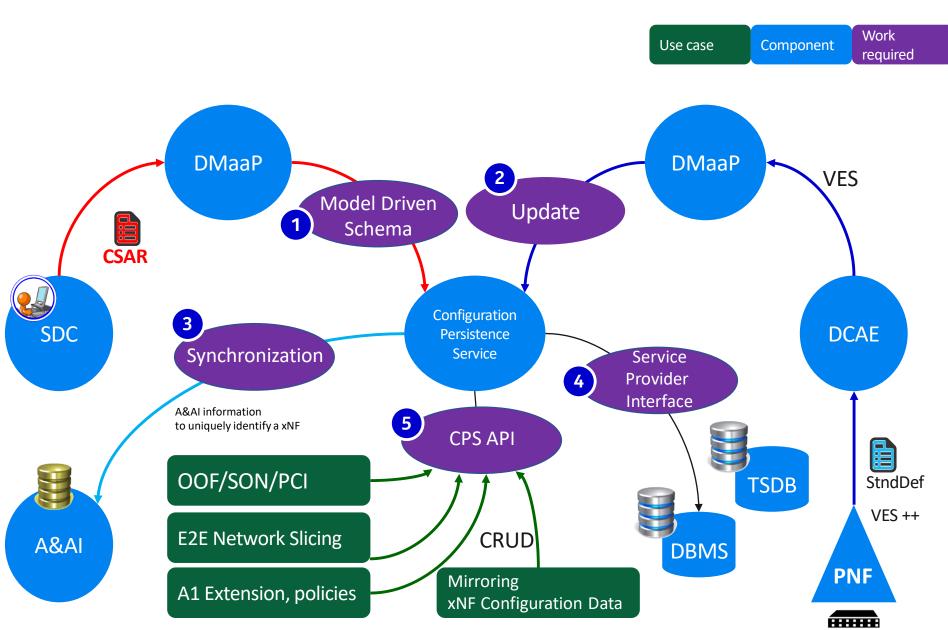
Parameter #2

Parameter #3

State Info

Associations

{ PNF #106 }


Cardinality Rules

Linking Restrictions

R7 Model Driven CPS PoC (Ericsson)

