
Multi-site State
Coordination Service

(MUSIC)
ONAP Policy Meeting 6/6/2018

Presented by Bharath Balasubramanian

Goal

A common state-coordination/management
platform (MUSIC) to build VNFs with 5 9s of
availability on 3 9s (or lower) software and
infrastructure in a cost-effective manner.

MUSIC Team
Responsibility AVP People

ONAP NA

Bharath Balasubramanian (PTL, ATT),
Viswanath Kumar Skand Priya (Verizon),

Abbas Fazal (ATT), Thomas Nelson
Junior (ATT), Greg Waines (Windriver),

Brendan Tschaen (ATT)

Overall leadership and vision, D2 and
ONAP evangelization

Oliver Spatscheck Bharath Balasubramanian,
Kaustubh Joshi

Design, architecture and prototypes Oliver Spatscheck
Bharath Balasubramanian,

Pamela Zave,
Richard Schlichting, Shankar

Core development team Gerald Karam
Abbas Fazal, Brendan Tschaen, Garima Mullick,
Thomas Nelson, Chinnamma Charalel, Vaibhav
Isanaka, Vikram Potturi, Inam Soomro, Srupane

Kondreddy,

Integrating into ECOMP common
software platform

Gerald Karam Heather Robinett, Michael Howe

Benchmarking and testing Catherine Lefevre Chetan Doshi, Leonardo Bellini, Andrea
Chiappa

Customers on board Abbas Fazal and Gerald Karam (HAS-ATT/ONAP, Portal-ATT/ONAP, Valet (ATT),
Sharon Chisholm, Jim Mount and Richard Trabedski (Amdocs POC for SDN-C-ATT)

To achieve 5 9s availability network services
(ONAP, VNFs, Edge/IoT services) need to
support multi-site, active-active services
with efficient failover.

Need of the hour
- Manage state of services across

thousands of geo-distributed sites.
- Provide resiliency/coordination protocols

to partition state across replicas and
ensure correct and efficient failover of
state during site-failures and site-
partitions.

Current Practice: May not
scale.

Site/DC in
Beijing

Logically
centralized db

Network partitions
far more common WAN latencies

in the order of 100s of msService

SQL
db

Site/DC in
Amsterdam

Service

SQL
db

Site/DC in
Irvine

Service

SQL
db

Rooted in the philosophy “the single-site solution should more or less
work across geo-distributed sites”. E.g. attempts to use MariaDB
clustering as is across sites — may not scale and/or allow partitioned
operation!

E.g: A preliminary study of MariaDB
scalability across the world.

Simple 3 node cluster with latency using netem — nearly half a
second average insertion time with 100 ms inter-node latency (typical
of a US-East, US-West, Europe deployment of ONAP). Will be worse
when we consider Irvine, Amsterdam, Beijing with > 200 ms latency.

Current Practice: Often wasteful
and erroneous.
Each team building its own solution — wasteful and
can often be erroneous due to complex distributed
protocols, replete with corner cases. E.g.

- How do you access state in a mutually exclusive manner
when required despite failures/split brain issues?

- Does the new active have the latest information on failover?

Current Practice: Does not
address future needs.
Most current designs barely address active-active needs,
and mostly ignore federation that is crucial for IoT/Edge.
E.g. ONAP for Edge/5G and in fact the entire network!

Monolithic design of
ONAP to control VNFs will not scale to the edge.

Federated design of
ONAP to control VNFs is much more practical.

Our solution: MUSIC
- A common state-management platform for

ONAP components/micro-services
specifically tailored for multi-site geo-
distributed replication and federation.

- Provide rich resiliency/coordination
recipes on top of MUSIC that ONAP
components can simply configure and use
— each team need not re-invent solutions.

Base solution
MUSIC maintains replicated state in an
eventually-consistent data-store
(Cassandra) wherein the access to the keys
can be protected using a strongly consistent
locking service (Zookeeper/Consul/etcd).

Why is it unique?
Despite site failures or network partitions, MUSIC
guarantees that the lock-holder to a key always
reads and writes to the latest value of the key
(formally called entry-consistency*) - no other tool
today achieves this.

Formally verified MUSIC protocols using model
checking.

* Under review at the Principles of Distributed Computing Conference (PODC 2018)

Why is it useful?
Through the MUSIC abstractions and entry-
consistency property, ONAP components/
services can achieve fine-grained flexible
consistency on their replicated state across sites
— acquire lock only when you need strong
consistency.

Provides a natural starting point for federation —
the lock holder for a bunch of keys owns the
state corresponding to those keys.

Recipes

- mdbc: A plugin for components to migrate
seamlessly from SQL usage to MUSIC

- prom: Policy driven ownership management of state
to partition and failover state in a consistent manner

- musicCAS: Distributed compare and set across
keys to perform atomic updates

- musicQ: A queue API across sites in which key
management is carefully done to ensure efficient
sorting

• MUSIC ensures through prom that
each service replica is the “owner” for
a particular set of state corresponding
to certain requests and assigns a few
backups for this state (completely
policy driven) on other sites

• The owner can now update state
locally either directly to MUSIC or
through mdbc for SQL-based
components doing only quorum writes
to other sites (strong consistency
without per operation locking!)

• On site failure prom will transfer state
ownership to another service on a
different site and ensure the new
owner has latest state.

MUSIC Vision of federation

MUSIC

Service = Any ONAP component/micro service/VNF

MUSIC Implementation
Thin shim layer (<10,000 lines) over two
production tested open source tools —
Apache Zookeeper and Cassandra provides
you with 5 9s of availability!

MUSIC Status
Use-Case Status

ECOMP

• MUSIC in production 17/10 as the state management service of
the ECOMP Homing Service (HAS) for SD-WAN.

• Currently integrating with Portal for 18/06
• SDN-C POC with Amdocs for 18/06
• Working actively with TechDev partners to make this the

resiliency platform for all ECOMP services (18/19/xx)

ONAP
• Official ONAP Project recommended by architecture

subcommittee for multisite state management
• R2 Beijing Release commitment from ONAP HAS and ONAP

Portal
VNFs Socialized the tool with Roman Pacewicz’s team to solicit VNF

use-cases.

IoT/Edge Computing
Working with University partners to design and implement
massively geo-distributed state-management architectures for
IoT/Edge use-cases.

MUSIC basics

 Architecture

Site 1

M

Site 2

M

Site 3

M

dataStore Replica part of an eventually-consistent
Key-value store like Cassandra

MUSIC Node
running core MUSIC

algorithms

lockStore Replica part of a strongly-consistent
store like Zookeeper

Usage

Data API

The basic REST API provides a
REST+JSON wrapper around the
standard Cassandra API. While this
is useful in itself, there is more…

Locking API

The novel locking API allows the client to create locks on keys (that
guarantees mutually exclusive access). Further, the client can chose
between eventual operations (no locks) and atomic operations on
keys (uses locks in a critical section)!

mdbc: multi-site
database cache

mdbc Basics
A plug-in for SQL-based components to
seamlessly use MUSIC with no change to
SQL code.

Ensures transactional guarantees within a
site with per-key choice of sync or async
replication across sites.

mdbc Design
- mdbc = local sql db + multi-site MUSIC

deployment
- Service replicated across multiple sites;

writes to and reads from the local mdbc sql
database

- mdbc captures local sql writes and
propagates it to MUSIC and captures local
reads and serves it from MUSIC

mdbc Usage
Portal

Local Cluster
Portal

Local Cluster
Portal

Local Cluster

SQL DB = within site
MariaDB Gallera cluster for Portal

mdbc config

Before:
//Register JDBC driver
Class.forName(“com.mysql.jdbc.Driver”);
//Open a connection
Connection conn =
DriverManager.getConnection(DB_URL,
connectionProps);

After:
//Register MDBC driver
Class.forName(“org.onap.mdbc.ProxyDriver");
//Open a connection
Connection conn =
DriverManager.getConnection(MDBC_DB_URL,
connectionProps);

mdbc properties file:

music_address=1.2.3.4
music_sync_tables= task, job, process
music_r_factor=3

prom: policy-driven state
ownership management

prom: policy-driven ownership
management
Detecting failure of a service and transferring ownership of state to a
standby on another site involves complex distributed system
challenges, replete with corner cases.

PROM provides recipes on top of MUSIC that services can simply
configure (policy-driven) to achieve different resiliency patterns:
active-standby, active-active with failover etc.

prom Usage

promD promD promD

prom config
 {
 "app-name":"sdnc",
 "aid":"389ce6ab-3aa0-47b9-9ad4-fa43cb2ce5ea",

 "namespace":"prom_sdnc",
 "userid":"promUID",
 "password":"promPW",
 "ensure-active-MT": "/home/bt054f/prom/sampleApp/ensureSdncActive.sh",

 "ensure-passive-MT":"/home/bt054f/prom/sampleApp/ensureSdncStandby.sh",
 "core-monitor-sleep-time":"1000",
 "prom-timeout":"5000",
 "no-of-retry-attempts":"3",

 "replica-id-list":[“MT", “BD“, ”NYC”],
 "music-location":[“10.127.253.18",“10.5.1.31"],
 "music-version":2
 }

