MEF Services Common Model & LSO Legato Interface Profile*

In collaboration with ONAP External API project

* Animated slides

Karthik Sethuraman, NEC Jack Pugaczewski, CenturyLink

Andy Mayer, AT&T

Overview: MEF approach to Standardized APIs

MCM – MEF Core Model

- MEF Core Model (MCM) is an "umbrella" information model that provides a base set of object definitions, relationships and reusable patterns supporting the concepts defined in MEF LSO architecture
 - Enables similar concepts to be modeled using the same patterns
 - It is the primary model from which other MEF information models are extended
- MCM's models the LSO concepts and functions from a Service Provider's point-of-view.
 - This includes interactions between the Service Provider and its Partners, as well as interactions between the Service Provider and its Customers.
 - Built from a top-down, bottom-up approach
- MCM is available as a MEF standard (MEF 78)

MEF Services Common Model Scope within MEF LSO

MSCM and other Model Relationships

MEF

MSCM Information Model

- The MSCM is intended to be leveraged at multiple LSO interfaces for multiple API development efforts.
 - Sonata, Cantata, Allegro, Interlude, Legato, etc
 - Each of these interfaces can leverage the common objects, attributes and relationships defined in the MSCM
- MSCM covers multiple MEF service specifications
 - SD-WAN Services
 - EVC Services (EP-LINE, EVP-LINE, EP-LAN, EVP-LAN, EP-TREE, EVP-TREE)
 - OVC Services (ACCESS-ELINE, TRANSIT-ELINE, ACCESS-ELAN, TRANSIT-ELAN)
 - Others (IP, L1, Cloud, Elastic, etc)
- MSCM is based-on/derived-from MEF Core Model (MCM) constructs
 - MCMServiceInterface, MCMServiceEndPoint, MCMOrderedService, MCMPartnerService, etc
- MSCM consolidates common types and common objects into models that can be imported by other efforts.
- MSCM aims to align with other external SDO models such as ONF Transport API (TAPI)

MEF Legato IPS Scope within MEF LSO

Use Case Actors: BA & SOF

Use cases from the perspective of Client/Requestor: BA Server/Provider: SOF

Figure 2 LSO Reference Architecture

Legato & MSCM Information Models – High Level View

Legato Service <u>API</u> Information Model

- Generic Service Interface Information Model (envelope)
 - Initial draft created from analysis of ONAP External API information model (by reverse engineering ONAP External API documentation)
 - Need to evolve terminology definitions, class details, class associations, state machines, sequences, etc
- MEF Service Specification Models (payload)
 - Current idea is to model MSCM services as Service Specifications that can be retrieved via a Service Catalog API
 - May need to prune MSCM Service classes (create an Legato Interface "Profile")
 - No need to curtail to a specific service spec, but can describe a service in the use cases as an example
 - MSCM sub-classes MCM & hence inherits all MCM attributes
 - Identify mapping between common/similar attributes in MSCM & Legato IM (ONAP ExtAPI based)

MEF Service Specifications Mapping (from MSCM project)

- Mapping MSCM to Legato IPS Envelope model
 - MSCM Service classes planned to be mapped to Legato Service Specification class
 - Using the UML abstraction/specify relationship
- Use tooling to generate OpenAPI/JSON Schema
 - Auto populate the meta-data fields and meta-data-like fields (category, subcategory)
 - @schemaLocation \rightarrow MEF MSCM Git repo public/published location
 - @baseType → MEFServiceSpecification, @type → Specific MEF Service type (e.g. EPL, EVPL, etc)
 - Generate Service Specification Characteristic/Value for every MSCM Service class-attribute

MSCM Additional Reference

«Interface»

MSCM SD-WAN

«Interface»

+ createPolicyMap(in policyMap: PolicyMap)

MSCM EVC Model Skeleton

MSCM OVC Model Skeleton

MSCM OVC Services Model Skeleton

LSAPI Additional Reference

Legato IPS Project Scope & Deliverables (all phases)

- [L64001_004] Interface Profile Specification for MEF LSO Legato IRP covering
 - Service Catalog
 - Service Ordering (including Service Instantiation)
 - Service Inventory
 - Service Topology
 - Service Notification
 - License Usage
- Deliverables
 - Interface Profile Specification (IPS)
 - Terminology, Requirements & Use Cases
 - Information Model (Class, State & Sequence diagrams)
 - Interface Implementation Specification (IIS)
 - Project proposal calls out ONAP (ExtAPI)
 - IM API data-schema mapping
 - Guides & other stuff (plan to follow Sonata template ⁽ⁱⁱⁱ⁾)
 - Software Artifacts
 - Papyrus UML + Gendoc output
 - OpenAPI/JSON schema

* Phase 1 (current) focus items

Use Cases under scope (all phases)

- In support of MEF 55 Requirements and Operational Threads
- Agile Product/Service design
 - Service Catalog & Specification
 - Technology & Service agnostic framework/mechanism
- Order Fulfillment & Service Control
 - Service Configuration and Activation
 - Service Control
 - Service Inventory and Topology
 - Service change Notification and Reporting
- Service Activation Testing
- Service Problem and Quality Management
- Service Usage measurements & reporting (in support of Billing)

Support of MEF 55 Operational Threads – Phase 1

- Designing and Launching a New Product Offering
 - A specification of the Services needed to support Product Instances corresponding to the Product Offering is created and retrieved
- Product Ordering and Service Activation Orchestration
 - LSO fulfills the order by selecting, assigning, configuring and activating the appropriate Services and associated resources that support the ordered Product Instance
- Controlling a Service
 - The Customer initiates a request to dynamically control a permitted aspect of its Service (e.g., bandwidth change or implementing traffic filtering controls, etc.).
 - LSO uses the defined service constraints and policies to determine if the dynamic control request is permitted.
 - LSO effects the necessary changes within its own domain to service the request.

Requirements – Phase 1

- Derived from the use case descriptions
- Interface requirements as opposed to "business" requirements
- English description of interface functions to be supported in implementation-agnostic manner Includes
 - High-level functional behavior/logic
 - Pre-conditions/Post-conditions
 - Key attributes to be exchanged (input/output), notifications, error/exceptions
- In support of following MEF 55, section 8.2 Business requirements
 - Fulfillment : R-LSO-RA-3, R-LSO-RA-4,
 - Configuration: R-LSO-RA-8, R-LSO-RA-10, R-LSO-RA-11, R-LSO-RA-12
 - Control: [R-LSO-RA-13] to [R-LSO-RA-20]

Key Envelope IM Constructs from ONAP ExtAPI

- Service Catalog
 - Service Specification
 - Service Specification Characteristic/Value (drop/don't -use)
 - Resource Specification
 - Related Party
 - State machines: Lifecycle (Certification) Status & Distribution Status
- Service Ordering
 - Service Order
 - Service Order Item
 - Service
 - Service Characteristic/Value
 - Related Party
 - State machines: Order State & Lifecycle State
- Service Inventory
 - Service
 - Service Characteristic/Value
 - Supporting Resource
 - Related Party
 - State Machines: Lifecycle State

LSAPI Service Catalog model

LSAPI Service Order model

LSAPI Service Inventory model

LSAPI Data Types

LSAPI Metadata

Project Resources & Meetings

- Project Home is on the MEF Member Wiki
 - <u>https://wiki.mef.net/pages/viewpage.action?pageId=82231371</u>
- Call Details
 - <u>https://wiki.mef.net/display/LSO/Legato+IPS+-+Call+Details</u>
 - Calls on Wednesdays at 12 PM US Eastern Time(EDT)
- Meeting notes are on the wiki:
 - <u>https://wiki.mef.net/display/LSO/Legato+IPS+Call+Notes-2019Q1</u>
- Contributions are on the wiki:
 - <u>https://wiki.mef.net/display/LSO/Legato+IPS+Contributions</u>
- Papyrus UML, API, etc are on MEF Github
 - <u>https://github.com/MEF-GIT/MEF-LSO-Legato-SDK/tree/master/experimental</u>

