

Configuration & Persistency Service

• TSC presentation – May 28, 2020 version 7

NOKIA Ben Cheung (Nokia) Nokia Marge Hillis (Nokia) Mata Joanne Liu-Rudel (AT&T) Mata Shankar N K (AT&T) Mata Ted Johnson (AT&T) ERICSSON Zu Qiang (Ericsson) ERICSSON Michela Bevilacqua (Ericsson) ERICSSON Toine Siebelink (Ericsson) ERICSSON Bruno Sokoto (Bell Canada) ERICSSON Tony Finnerty (Ericsson) ERICSSONS Ciaran Johnston (Ericsson)
 Swami N (Wipro)
 Bell Bruno Sokato (Bell Canada)

DDF June 22-25, 2020 – C&PS Agenda

TIME	JUNE 11, 2020 AGENDA ITEM
20 min	Overview of C&PS – Introduction
20 min	Model Driven C&PS Proof of Concept (PoC) – Overview of the Model-Driven C&PS PoC for R7
3 min	R7 & Beyond Roadmap – Model Driven Proof of Concept (PoC) in R7, way forward in R8 Honolulu, New plan & roadmap
12 min	Use Cases using C&PS Database – Overview of C&PS Applications
5 min	Questions & Answers – Q&A

TIME Q&A Session Post-Session(

(1 hour) Follow-up questions – Follow-up meetings at C&PS Team Call (Friday)

Overview of Configuration & Persistency Service

Business Case

Architecture S/C

Overview

Technical Flows

R7 Configuration Persistency Service

Executive Summary - The Configuration & Persistency Service is a *real-time service* that is designed to serve as a data repository for Run-time data that needs to be persistent. This will be explored as a PoC. R4/R5/R6 functionality from ConfigDB will be enhanced to continue to serve Use Cases. *Focus on storing run-time DATA RELATED to NETWORK ELEMENT instances.*

Business Impact - The ability for service operators to <u>visualize and manage network element</u> <u>data in a network (PNFs, VNFs, and logical constructs)</u> with ONAP is a critical business function because they are key Life Cycle Management (LCM) and OA&M operations. The project has business impacts to enhance the operation of data-handling within ONAP by providing efficient data layer services.

Business Markets - This project applies to any domain (wireless, transport, optical, and wireline) that ONAP may manage. It is not a market or geographical specific capability. It is expected that scaled ONAP installations such as Edge & Core ONAP deployments will also deploy the database across each installation.

Funding/Financial Impacts - This project represents a large potential Operating Expense (OPEX) savings for operators because of the ability to configure networks saving time and expenses.

Configuration & Persistency Service (C&PS)

Configuration & Persistency Service (C&PS)

Configuration & Persistency Service (C&PS)

C&PS READING: PNF Reports StndDef VES

C&PS READING: PNF Reports Configuration

Data Persistency Service (Run-Time View)

DMaaP

Config & Persist Service

(1) During Network setup
"getall" retrieves from A&AI the
ENTIRE A&AI graph. Used to
setup the initial view of C&PS
(2) Updates additions/deletions
of xNFs

In R6/R7: "getall" A&AI update, individual A&AI update In R8+: RTCDB is a stand-alone component. Performs "getall" A&AI update and atomic A&AI update. Atomic "updates" from A&AI add/remove of xNF is published by A&AI as an update on DMaaP bus

C&PS Database

Run-Time Operational Data Configuration Info Exo-Inventory Data RT Logical & Physical Connections

A&AI Sync

C&PS WRITING: Micro Service Update

THELINUX FOUNDATION

ONAP DMaaP **Config & Persist RUN-TIME** Service In R6/R7: RTCDB is in CC-SDK (part of SDN-R). Thus, SDN-R receives the A Micro-Service, for example VES Event and writes to RTCDB In R8+: RTCDB is a stand-alone component. RTCDB subscribes to the DMaaP topic and gets the DMaaP event off the DMaaP bus to

OOF/SON/PCI determines that an update is needed to RTCDB from operation/algorithm. It publishes to the DMaaP bus an update event.

update itself.

C&PS Database

Run-Time Operational Data Configuration Info Exo-Inventory Data RT Logical & Physical Connections

Micro Service OOF/SON/PCI

Read/(Write)

C&PS WRITING: From Controller SDN-R

C&PS WRITING: From Controller SDN-C

R7 – Model Driven Configuration & Persistency Service Proof of Concept

R7 Model Driven C&PS PoC (Ericsson)

- Provide schema-less model-driven (type safe) access to data which is owned by applications or indirectly by network functions
 - Applications own their own subset of the data according to cloud native principles ; in a separate logical or actual CPS instance
- Provide a model-driven specification for integrating external data sources
- Persisted data can be normalized or nonnormalized
- Supports bulk, incremental and attribute value change reconciliation. It is best suited to data that is hierarchical and/or highly connected.
- New model versions can be introduced onthe-fly to the model repository to allow for evolution of the management platform to support network function versions without the need for a software change
- The Model Service is populated in multiple ways
 - Network function models are automatically injected by the Design and Onboarding component when the software packages are onboarded to it
 Models are discovered from the
 - Models are discovered from the network functions on instantiation
 - Application-specific models are injected by the App Manager when the app is deployed

R7 Model Driven C&PS PoC (Ericsson)

C&PS Roadmap

C&PS Roadmap & R7-R8 Plan

Configuration & Persistency Service (CPS) Roadmap -

Use Cases & Proof of Concepts

Use Cases

Proof of Concept

C&PS Use Cases and Proof of Concepts

5G USE CASE	DESCRIPTION
MODEL DRIVEN C&PS POC	Proof of Concept development to showcase model-driven Configuration & Persistency Service operation. It schema-less model-driven (type safe) access to data which is owned by applications or indirectly by network functions
OOF - SON (5G)	Optimization and SON functions for 5G RAN. Self-optimization, Self-Healing, Self-configuration.
NETWORK SLICING (5G Use Case)	Network Slicing defines Slices for 5G RAN systems. Network Slicing is a long-lead (multi-release) development. (will be presented in its own lecture at the Virtual Face to Face)
MOBILITY STANDARDS HARMONIZATION/ A1 adapter	A1 adapter: Enhancing the A1 adapter/interface capabilities in ONAP to manage A1 Policies, support multiple A1 targets in the RAN and multi-version A1 interface for different A1 targets, introduce secure TLS communication.
STATE MANAGEMENT POC	Bell Canada led PoC for State tracking and State management using C&PS

Model Driven C&PS PoC (Ericsson)

- Provide schema-less model-driven (type safe) access to data which is owned by applications or indirectly by network functions
 - Applications own their own subset of the data according to cloud native principles ; in a separate logical or actual CPS instance
- Provide a model-driven specification for integrating external data sources
- Persisted data can be normalized or nonnormalized
- Supports bulk, incremental and attribute value change reconciliation. It is best suited to data that is hierarchical and/or highly connected.
- New model versions can be introduced onthe-fly to the model repository to allow for evolution of the management platform to support network function versions without the need for a software change
- The Model Service is populated in multiple ways
 - Network function models are automatically injected by the Design and Onboarding component when the software packages are onboarded to it
 Models are discovered from the
 - Models are discovered from the network functions on instantiation
 - Application-specific models are injected by the App Manager when the app is deployed

Model Driven C&PS PoC (Ericsson)

OOF / SON / PCI Use Case

OOF / SON / PCI Use Case

- Config DB (MariaDB) used by PCI-H-MS (step 4b) and OOF (step 7)
- Query API (swagger JSON spec) exposed to other ONAP modules
- · cellId needs to be globally unique (assumed eCGI) and align with ONAP YANG model, ORAN, 3GPP
- pnf-name indicates netconf server to be used for interactions regarding cells
- Pnf object (pnf-name, pnf-id) to be aligned with A&AI (A&AI/ConfigDB interaction to be finalized in Dublin release)

Cell (Object)		pnf (Object)		ConfigDB API		
Attribute	Format	Attribute	Format	API	Input	Output
networkId	string	pnf-name	String	GET cellList	networkld, ts	List of cellIds
cellId	string	cells	List of cellID's	GET PCI	cellId, ts	PCI Value
pciValue	uint64	lastModifiedTS	timestamp	GET nbrList	cellId, ts	List of cellIds
nbrList	list of cellId					values
lastModifiedTS	timestamp			GET pnf-	cellID, ts	pnf-name
pnf-name	string			name		

End to End Network Slicing Use Case

3rd party component

End to End Network Slicing Use Case

NetworkSlice	Network Slice NRM	operationalState
NetworkSlice	Network Slice NRM	administrativeState
NetworkSlice	Network Slice NRM	serviceProfileList
NetworkSlice	Network Slice NRM	networkSliceSubnetRef
NetworkSliceSubnet	Network Slice NRM	operationalState
NetworkSliceSubnet	Network Slice NRM	administrativeState
NetworkSliceSubnet	Network Slice NRM	nsInfo
NetworkSliceSubnet	Network Slice NRM	sliceProfileList
NetworkSliceSubnet	Network Slice NRM	managedFunctionRef
NetworkSliceSubnet	Network Slice NRM	networkSliceSubnetRef
ServiceProfile	Network Slice NRM	serviceProfileId
ServiceProfile	Network Slice NRM	sNSSAIList
ServiceProfile	Network Slice NRM	pLMNIdList
ServiceProfile	Network Slice NRM	perfReq
ServiceProfile	Network Slice NRM	maxNumberofUEs
ServiceProfile	Network Slice NRM	coverageAreaTAList
ServiceProfile	Network Slice NRM	latency
ServiceProfile	Network Slice NRM	uEMobilityLevel
ServiceProfile	Network Slice NRM	resourceSharingLevel
ServiceProfile	Network Slice NRM	sST
ServiceProfile	Network Slice NRM	availability
SliceProfile	Network Slice NRM	sliceProfileId
SliceProfile	Network Slice NRM	sNSSAIList
SliceProfile	Network Slice NRM	pLMNIdList
SliceProfile	Network Slice NRM	perfReq
SliceProfile	Network Slice NRM	maxNumberofUEs
SliceProfile	Network Slice NRM	coverageAreaTAList
SliceProfile	Network Slice NRM	latency
SliceProfile	Network Slice NRM	uEMobilityLevel
SliceProfile	Network Slice NRM	resourceSharingLevel

A1 Policy Extension ORAN-ONAP Harmonize

Executive Summary - This requirement enhances the A1 adapter/interface capabilities provided in Rel 6 as part of 5G/ORAN & 3GPP Standards Harmonization requirement (<u>REQ-38</u>). O-RAN has defined A1 interface specification in the context of the management of 5G RAN elements to provide intent based policies for optimization of the RAN network performance. Planned enhancements for Rel 7 include additional support for managing A1 Policies, multiple A1 targets in the RAN, multiversion support for different A1 targets, and secure TLS communication.

State Management PoC (Bell Canada)

State Management PoC (Bell Canada)

State Management PoC (Bell Canada)

state-controller State Controller		
GET	/states retrieveByFilter	
POST	/states add	
GET	/states/{timestamp} retrieve	
DELETE	/states/{timestamp} delete	
GET	/states/search retrieveByQuery	

APPENDIX

Benjamin Cheung

Access, Syncing, Indexing Runtime Config DB

ACCESS TO C&PS Database (READ/WRITE):

READ ONLY - Run-Time parameters can be READ by any ONAP platform component and any ONAP plug-in. Examples of ONAP platform components are A&AI, SDC, SDNC etc.

READ/WRITE - Parameters can be READ/WRITE from Controllers, DCAE (future), VES Collector/DMaaP, A&AI, Policy/CLAMP (future) and other components with permission settings.

DEFAULT - SO (future), DCAE, A&AI (indirectly), Controllers (CDS, APPC, SDNC) will have default read/write access to C&PS Database

DEFINABLE - Other components will have default read-only access to Config & Persist Service but can be given Read/Write access on a per record basis.

SYNCING NEW xNF ADDED or DELETED (A&AI):

ELEMENT SYNC - Software keeps the A&AI elements with the elements in the RunTime Config DB in Sync. When the network first being established, a *GetAllPNFs* function from A&AI can be used on startup.

A&AI - A&AI is still the master of valid entities in the network and provides a dynamic view of the assets (xNFs) available to ONAP

C&PS Database - The C&PS Database is a master of the associate (exo-inventory) data associated with the entities. **DYNAMIC VIEW** - When a xNF appears or is removed from the system, C&PS Database records will be added/removed based on A&AI entries.

LOGIC - When a xNF appears is removed there is logic to determine how and when something is to be updated. There is some intelligence to know what elements of update.

INDEXING:

INDEXING - Data Records will be indexed by xNF (VNF, PNF, ANF). It would be an objective to have a similar indexing mechanism as A&AI. May also need an index to be a logical object ID.

RETRIEVAL - How are data records retrieved efficiently. This relates how the records are indexed.

Dependencies vs Scope

DEPENDENCIES – need to operate

SDC Yang Model (to load schema) ability to process & translate yang models into schemas AAF (intra-ONAP security) Database implementation for Data Persistency (for example MariaDB)

DEPENDENCIES – value added

THELINUX FOUNDATION

DMaaP (some use cases to work / indirect dependency)

SCOPE

C&PS Database

RECEIVE INFORMATION WRITE INFORMATION PUBLISH CHANGES REFERENTIAL INTEGRITY INGEST PACKAGES LOGICAL OBJECTS ASSOCIATIONS CARDINALITY RULES LINKING RESTRICTIONS SYNCHRONIZATION DATA INTEGRITY & RECOVERY

Config & Persist Service (Run-Time View)

A&AI correlated/Index to RunTimeDB Publish changes in A&AI, notification on DMaaP

Indices into Config & Persist Service may also use Flex-Index (such as CellID)

C&PS Database (Run-Time View)

