
Integrating External Controllers with ONAP

AT&T Labs 



2

Motivation

• Some service providers may want to leverage an alternative to an 
ONAP “out of the box” Controller (e.g., SDNC, GenNFC) for some 
subset of Resources.  For example:
– There may exist some VNFs that come with their own “Controller” that the service 

provider wants to use
– There may exist some VNFs that leverage capabilities that the corresponding 

ONAP model (and hence ONAP Controller) does not yet support

• We see the need for a flexible approach that allows ONAP service 
providers to easily customize their ONAP instance to integrate External 
Controllers, as needed

• However, we recommend that “External Controllers” would “plug in” to 
ONAP in such a way to avoid adding complexity to the ONAP 
architecture



3

Proposed High Level Approach

• Note that ONAP can support external components being “plugged in”.  E.g., VNFM.  So there is no technical reason why ONAP 
couldn’t support External Controller being “plugged in”.

• If a VNF vendor feels the need to provide their own “External Controller” because their VNF has needs that are not supported by the 
model-driven ONAP (out of the box) Controllers:

– The first preference should be for that VNF vendor to contribute the needed capabilities to the ONAP CCSDK to fill the functional gaps.  I.e., this 

would eliminate the need for an “External Controller”.  Rather, the VNF would be managed by the ONAP Controller. (The remainder of this deck 

assumes that the VNF vendor is either not willing or not able to do this.)

– The second preference would that the VNF vendor would use the ONAP CCSDK to create the “base” of their External Controller, and add their “secret 

sauce” to it.

– The third (and last) preference would be for the VNF vendor to custom-build an External Controller.

• To avoid complexity of the architecture, ONAP should only provide adaption to “plug in” external components that are of a class that 
exhibit well-defined functionality and APIs.  E.g., ONAP can support a VNFM adaptor because the VNFM meets the ETSI standard.

• However, there currently exists no well-defined specification for a “Controller”.  Thus, we will consider the ONAP Controller itself to be 
the de facto standard of “what is a Controller”, including an “External Controller”.

• Therefore it would be the responsibility of the External Controller vendor to adapt itself to meet the ONAP (out of the box) “Controller” 
definition.  I.e., the External Controller must:

– Meet the respective ONAP (out of the box) Controller (at least run-time) APIs for the functionality they support (either natively or through adaptation). 

– Call the necessary other ONAP APIs (e.g., A&AI) proper to the role of the respective ONAP (out of the box) Controller (see subsequent slide) 



4

Proposed High Level Approach (Continued)

• Insofar that an External Controller meets the ONAP definition for a “Controller”, there is no need for ONAP to support an 

“adaptor” for such an External Controller; rather the External Controller can “plug in” to ONAP directly.

• An External Controller would typically replace an ONAP Controller’s function only within a specific (set of) domain(s)

– A “domain” in this context is a collection of one or more Resource types (see subsequent slide) 

• Such domain specific External Controllers are outside ONAP and as such not integrated or tested during ONAP community 

integration test.  Rather the service provider that customizes their ONAP instance to support an External Controller would 

take on this integration testing.

• The role of other ONAP modules doesn’t change in the presence of an External Controller:

– SDC will be used for modeling the management of Resources and Services (including on-boarding, designing and full LCM)

– SO will provide E2E orchestration services for all lifecycle management functions for all managed objects

– Obtaining and managing cloud resources will be done through ONAP multi-cloud layer

– A&AI will maintain inventory of all the managed Resources (controlled by External Controllers or ONAP Controllers)

– DCAE will collect telemetry data directly from all managed objects / services (without going through the external controllers) and provide 
analytic services

– Etc.



APIAPI APIAPI APIAPI

5

Integration of External Controllers – Target View

Policy Creation & Validation

Analytic Application Design

Resource Onboarding

Service  Design

Catalog

Active & Available 

Inventory

External Registry

Generic NF Controllers  (L4-L7)

Data Collection, 

Analytics, and Events

Event Correlation 

SDN Controller

(L0-L3)

Adaptation Layer

Orchestration

Closed Loop Design

Change Management Design

Adaptation Layer

Life Cycle Management & Config

Design Test & Certification

External Controller(s)

Directed

Graph

Files – XML 

(Eng Rules)

Network Data 

Model

Files – YANG 

(i.e. IPAG EMT)

Service Data 

Model

Files  - YANG 

(i.e.UNI port)

Configuration 
Templates

Svc Recipe

Configuration 
Templates

Network / 
service 
Model

Service Recipes

Micro Services Bus / Data Movement

Recipe/Eng Rules & Policy Distribution

External Controller meets all run-time 

APIs for the relevant functions needed 

by the Resource(s) it manages

external 

controller 

artifact 

design 

S
D

CThe registration of 

new External

Controller

instances needs to 

be worked 

through.  Post-

registration, the 

management of 

the mapping 

between Service/

Resource types 

and the Controller 

instance for each 

type would be 

handled in the 

same manner as 

any “internal” 

ONAP Controller.

DCAE collects 

telemetry data 

directly from 

VNF / PNFs

Optional

Optional

External Controller can also choose to 

meet ONAP design-time APIs.



6

ONAP Target Architecture
(High-Level Functional View)

DESIGN-TIME

Policy Creation & Validation

Analytic Application Design

V
N

F
 /

 P
N

F
 O

n
b

o
a

rd
in

g

Resource Onboarding

Service  Design

Catalog

Recipe/Eng Rules & Policy Distribution

O
N

A
P

 O
p

e
ra

ti
o

n
s 

M
a

n
a

g
e

r 

Dashboard OA&M

ONAP External APIs 

Common
Services

Application

Authorization

Framework

Logging

Policy 

Framework

Active & Available 

Inventory

External Registry

Generic NF Controllers  (L4-L7)

Data Collection, 

Analytics, and Events

Event Correlation 

ONAP 

Optimization 

Framework

SDN Controller

(L0-L3)

Optional External Systems

Network Function Layer

Hypervisor / OS Layer OpenStack AzureVMwareAkaraino

…

3rd Party Controller B

Kubernetes

VNFs

PNFs

Public

Cloud
Private

Edge Cloud

Private

DC Cloud

IPMPLS

M
a

n
a

g
e

d
 

E
n

v
ir

o
n

m
e

n
t

Orchestration

Micro Services Bus / Data Movement (see Note 1)

Closed Loop Design

Change Management Design

Design Test & Certification

CLIOSS / BSS ONAP Portal

Specific VNF Manager Element Management System

RUN-TIME

Common 

Services 

Multi-Cloud

Adaptation

U-UI

Others

C
C

S
D

KConfiguration &  Life 

Cycle Management

Configuration &  Life 

Cycle Management

3rd Party Controller A

Note that this presentation does not address the “3rd

Party Controller” that appears on the ONAP Target 

Architecture slide.  Rather, this presentation 

addresses “External Controllers” which are peers of 

SDNC and GNFC as shown on the next slide.



7

ONAP Target Architecture
(High-Level Functional View)

DESIGN-TIME

Policy Creation & Validation

Analytic Application Design

V
N

F
 /

 P
N

F
 O

n
b

o
a

rd
in

g

Resource Onboarding

Service  Design

Catalog

Recipe/Eng Rules & Policy Distribution

O
N

A
P

 O
p

e
ra

ti
o

n
s 

M
a

n
a

g
e

r 

Dashboard OA&M

ONAP External APIs 

Policy 

Framework

Active & Available 

Inventory

External Registry

Data Collection, 

Analytics, and Events

Event Correlation 

SDN Controller

(L0-L3)

Optional External Systems

Network Function Layer

Hypervisor / OS Layer OpenStack AzureVMwareAkaraino

…

Kubernetes

VNFs

PNFs

Public

Cloud
Private

Edge Cloud

Private

DC Cloud

IPMPLS

M
a

n
a

g
e

d
 

E
n

v
ir

o
n

m
e

n
t

Orchestration

Micro Services Bus / Data Movement (see Note 1)

Closed Loop Design

Change Management Design

Design Test & Certification

CLIOSS / BSS ONAP Portal

Element Management System

RUN-TIME

Multi-Cloud

Adaptation

U-UI

C
C

S
D

KConfiguration &  Life 

Cycle Management

Generic NF Controllers  

(L4-L7)

Configuration &  Life 

Cycle Management

Specific VNF Manager External Controller

Common
Services

Application

Authorization

Framework

Logging

ONAP 

Optimization 

Framework

Common 

Services 

Others



8

Next Steps: Define What Is an ONAP Controller

• In order for the proposed approach to work, it is necessary to publish a well-defined specification of the functionality that an 

ONAP Controller supports and the APIs it exposes to meet that functionality.  Among other things, this definition should include

the following points…

• What is the “scope” of an ONAP Controller:

– ONAP components interact with ONAP Controllers primarily at the “Resource-level”, within a “Service context”. 

– ONAP Controllers expose Resource-level LCM APIs such as: configure NF, activate NF, restart NF, run NF health check, upgrade NF 
software, etc.

– For example, SO interactions with Controllers are fundamentally at the Resource level, where a “Resource” is either of Network Function (a 
VNF, PNF, or Allotted Resource (“my share” of a NF) or a Network (e.g., “my share” of a WAN)

– E.g., for an ONAP Service X that is comprised of 3 dedicated VNF types: A ,B, and C, a different GNFC type/instance could be used to 

configure each VNF type.  The VNF A GNFC is able to configure that VNF in the context of the Service X.  

– Hence, ONAP Controllers are more properly thought of as being “Resource-level Controllers”.  The locus of “Service-level Control” in ONAP 
is understood not to be a Controller but rather the collective of interacting components within ONAP itself.

• How does an SDNC differ from a GNFC:

– The ONAP Target Architecture diagram represents ONAP Controllers as being of two basic “types”

– We use the term “SDNC” for a ONAP Controller instance that manages Network Function Resources that provide L0-3 functionality and/or 

manages (non-Network Function) Resources that are Networks.

– We use the term “GNFC” for an ONAP Controller instance that manages Network Function Resources that provide L4+ functionality.

– Because both SDNC and Gen NFC perform common LCM functions for Network Function Resources, they should both be implemented 

from a common CCSDK (separate presentation).



9

What is an ONAP Controller? (Continued)

• The “special case” of “assign” (?):

– It is only an SDNC that performs the “assign” functionality for all Network Functions (L0+) and Network

o The “assign” function is called by Orchestration to ensure that ONAP knows the instance values for all of the “deployment data” 

attributes for that Resource.  E.g., it is as a result of the “assign” interaction that SDNC assigns instance values for the IP Addresses 

that correspond to the external connection points of a given Network Function (e.g., VNF) or Network (e.g., WAN VLAN).

o By “deployment data” we mean that set of data that must be configured at instantiation time in order for the Resource to be further 

managed (configured) by ONAP.

o Note that ONAP hasn’t typically employed the term “deployment data” but rather this term is being adopted for this presentation from 

the ETSI common usage and is meant to convey the same meaning as ETSI assumes.

– It is believed that in some cases this “assign” function could require service-level context that spans across multiple 

Resource instances within a given Service Instance.

o For this reason, ONAP currently also supports a service-level “assign” interaction with SDNC.  This was created due to the potential 

existence of “service-level” assignments.  However, today not much is done with this call.

o It is also for this reason that the same SDNC instance performs the “assign” function for all Resource instances for a given Service 

instance.

– It is believed that this scope into the “service-level” space is unique to the “assign” function, and not shared for other LCM 

operations.  E.g., for a given Service instance, a different Controller instance could be used to “configure” and “activate” 

each VNF instance that comprise that Service instance



s

Backup Slides



11

ONAP Processing for Example Service “X” (Target Architecture Assumed)

SO

Controller (SDNC or GNFC)

Instantiate Svc X

Assign VNF a

(L0-7)

[repeat for VNF b]

Activate VNF a

[Repeat for VNF b]

Post Instantiate (Configure) Svc X

Post Instantiate (Configure) VNF a

[Repeat for VNF b]

Configure (Initial)

VNF a 

[repeat for VNF b]

VNF a

Configure VNF a

(netconf)

[repeat for VNF b]Create VNF a

[repeat for VNF b]

MultiVIM

Configure VNF a

(netconf)

[Repeat for VNF b]

3

5

6 8

9

SDNC

Assign Svc X

(L0-7)

4

Svc X

VNF A VNF B
1

Decompose, Home Svc X, spawn Resource-level (VNF a, b) sub-flows2

7

10

11



AT&T

SDNC “Assign” Function for Example Service Y

GW GW
VNF 2VNF 1

AWSAWS

PE PE

AT&T

3rd Party Controller

VLAN =123
VLAN =123

WAN modeled as an SDC Resource

Resource 1

VNF

Resource 2

VNF
Resource a

Network 

VLAN =123 VLAN =123

“assign Resource a” results in assigning the VLAN 

endpoints or the WAN network a

“assign Resource 1” results in assigning the VLAN 

endpoint of VNF 1

“assign Resource 1” results in assigning the VLAN 

endpoint of VNF 2

Svc Y

VNF 1 VNF 2 Network a


