

Service Mesh and Related Microservice Technologies in ONAP

Contributors: Ramki Krishnan (VMware), Srini Addepalli (Intel), Manoj Nair (Net Cracker), Tal Liron (Red Hat), Roger Maitland (Amdocs), Huabing Zhao (ZTE)

Primary Sources:

- ONAP Santa Clara Event: "Towards a Comprehensive ONAP Operations Management Solution, 2017 Santa Clara event," <u>https://wiki.onap.org/download/attachments/16002054/ONAP-comprehensive-oom-v1.pdf?version=1&modificationDate=1513963503000&api=v2</u>

- Material from various Kubecon Austin 2017 presentations on leading edge open source technologies for platforms & microservices and CNCF Open Source projects

Agenda

"Service Mesh"

- Evolution & Business Benefit
- Architectural Overview & Popular Open Source Projects
- Change Management & Security Examples
- ONAP Problem Statement
- Mapping to ONAP S3P
- ONAP Architectural Recommendations
- Cloud Native ONAP Workloads ONAP Impact
- ONAP Collaboration Recommendation

Service Mesh - Evolution & Business Benefit

Cloud-native Feature set	Design Pattern	Implementation Examples	Benefit	Challenge
Request-level load balancing, circuit- breaking, instrumentation, hop-by-hop security	Client libraries for load balancing, circuit breaking, telemetry, hop-by- hop security	Stubby at Google, Hysterix at Netflix, Finagle at Twitter etc.	@scale Microservices deployment	Tight coupling between service owner and platform team
Same as Above	"Service Mesh" - Pluggable sidecar containers & Proxies for Above	Open Source: Istio, Linkerd etc.	Above + Decoupling service owner from platform team – clear separation of concerns	Performance impact for certain use cases

Service Mesh - Architectural Overview & Popular CNCF projects

Service Mesh Data Plane - pluggable sidecars for distributed policy enforcement, telemetry agent function etc.:

• Linkerd, NGINX, HAProxy, Envoy, Traefik etc.

Service Mesh Control Plane - centralized policy administration, telemetry collection etc.:

• Istio, Nelson, SmartStack, Conduit etc.

Related Popular CNCF Projects

- Service Assurance
- Prometheus
- Distributed Tracing
- Zipkin, Jaeger

• Visualization

- Grafana

Simpler Architecture

- Minimizes code changes and increases stability
- Most functionality in sidecars (platform containers)
- Application is not aware of sidecars
- Automatic sidecar injection no deployment modification *Hadoop MapReduce Ecosystem Analogy*
- User needs to implement just a mapper and a reducer
- Rest all is provided by Hadoop infrastructure

THELINUX FOUNDATION

Image Source Philip Calcado, Bouyant Inc. http://philcalcado.com/2017/08/03/pattern_service_mesh.html

Service Mesh - Live Change Management Example

Automatically maintain multiple versions

- Istio Pilot/Envoy service tags provide finer-grained routing (partitioning endpoints between A/B for A/B testing)
- Live Upgrades can be tested in real production environments without affecting services

Service Versions

Source: Istio documentation

https://istio.io/docs/concepts/traffic-management/request-routing.html

Service Mesh - Zero-Trust Security Example

Traditional perimeter security via firewalls is not sufficient

- Often, more attacks originate from "inside"
- Definitions of "inside" and "outside" change dynamically
 Specialized techniques for single type of security are not sufficient
- EBPF techniques can be used, but not sufficient Requires mutual TLS between all segments (across each hop)
- Currently, often internal communication is not encrypted

Source: talk by Ahmet Balkan (Google) at Kubecon 2017 via Tweet from Evan Gilman (Scytale; @evan2645)

Policy based orchestration of network security

Control plane and pluggable sidecar (platform container) proxies

Authentication and secure service-to-service traffic management

- Secret management, regular rotation of credentials, bootstrapping credentials
- Compatibility with variety of external authentication systems

<u>Open Source Standard</u>: Secure Production Infrastructure Framework for Everyone (SPIFFE) <u>SPIFFE Implementations</u>: SPIRE, Istio Auth

THELINUX FOUNDATION

Service Mesh – ONAP Problem Statement

Challenges in ONAP Micro Service Architecture

- Need for client libraries for infrastructure services
 - Consumes lot of time by each project; Error prone; Mismatch in capabilities across projects.
 - Few examples:
 - Integration of Authentication and Authorization by every service; Mutual-TLS enablement by every service; Storing Secrets securely by each service.
- Polyglot challenges
 - ONAP services are written in various languages (Java, Python etc.)
 - Client libraries in various languages and language specific restrictions to use some features uniformly.
- Visibility of inter-service data for trouble shooting and any kind of analytics & and also tracing the requests across projects.
 - If Mutual-TLS implemented from the service itself, any troubleshooting that is needed during operations is tough and expect code changes in every project for debugging.
- Service Discovery, Load balancing of requests among services, Circuit breaking, Health Checks and API routing etc. require changes in every ONAP service container.
- No easy way to address rolling updates and ensuring continuous operations (versioning etc.)
- Achieving security is dependent on ONAP projects (System call filtering, Storing keys securely in TPM/SGX, Keeping password secure etc.)

Solution Direction – Service Mesh

- Eliminate or reduce micro-service infrastructure level tasks in ONAP services
- Ensure that ONAP Services have only the business logic of that service

Service Mesh – Mapping to ONAP S3P (and more)

Cloud-native Feature set	Service Mesh Data Plane for K8S	Service Mesh Control Plane for K8S	ONAP S3P Mapping	
Resiliency (timeouts, circuit breakers, etc.) – (F) in FCAPS	Envoy, Linkerd	Istio Pilot, Conduit	Resiliency Level 2 – single site automated recovery	
Troubleshooting/Tracing – (F) in FCAPS	Envoy, Linkerd	Istio integrated with Zipkin/Jaeger, Conduit	Manageability Level 2 – tracing across components	
Fine-grained routing/load- balancing across multiple SW versions – (C) in FCAPS	Envoy, Linkerd	Istio Pilot, Conduit	Manageability Level 2 – single component upgrade; Live upgrade (ONAP S3P+) Scalability Level 1 – single site horizontal scaling	
Visibility/Telemetry – (A) (P) in FCAPS	Envoy, Linkerd	Istio Mixer with Prometheus/Grafana, Conduit	Performance Level 2 & 3 Manageability Level 2 – single logging system	
Hop-by-hop security – (S) in FCAPS	Envoy, Linkerd	Istio Auth, Conduit	Security Level 2 internal communication encrypted	

Note: Istio's data plane of choice is Envoy, Conduit's data plane of choice is Linkerd

Service Mesh – ONAP Architectural Recommendation (1)

- Service Mesh Component Implementation Recommendation (Metrics: maturity, ease of use, contributing companies)
 - Service Mesh Control Plane Istio
 - Service Mesh Data Plane
 - Tracing
 - Service Assurance
 - Metric Visualization
 - Service Graph

- Envoy
 - Zipkin/Jaeger addon
 - Prometheus addon

- Servicegraph addon

- Grafana addon

- Foundational
- Foundational
- Istio Integration
- Istio Integration
- Istio/Prometheus Integration
- Istio/Prometheus Integration
- Related Component Implementation Recommendation
 - Logging Collector

- Fluentd daemon

- Fluentd K8S Integration

Service Mesh – ONAP Architectural Recommendation (2)

- Casablanca Service Mesh & Related Technologies for at least some ONAP Components on K8S
 - ONAP Project Impact & Value Proposition
 - MSB
 - Istio integration (automatic sidecar injection etc.) discussion in progress
 - AAF
 - Leverage Envoy and Istio Auth as a holistic alternative to the current implementation of secure communication between microservices
 - 00M
 - Leverage Istio etc. for reusable DBaaS components, e.g. MariaDB Galera
 - Logging
 - Leverage Fluentd K8S integration
 - Integration
 - Leverage Istio etc. Live Upgrade capability for key ONAP components
- Casablanca+ Service Mesh & Related Technologies for all ONAP Components on K8S
 - Expand on Casablanca work

Service Mesh & Related Technologies for Cloud Native ONAP Workloads ONAP Impact

Service Mesh – ONAP Workloads Architectural Recommendation

Cloud Native ONAP Workload Examples

- Virtual Network Functions and Edge Applications (ONAP Edge Analytic, Optimization & Context Processing etc. https://wiki.onap.org/display/DW/Edge+Scoping)
- Cloud Native vIMS Example -- https://github.com/Intel-Corp/clearwater-kubernertes
- Casablanca+ Service Mesh for ONAP Containerized Workloads (VNFs etc.)
 - ONAP Project Impact & Value Proposition
 - Multi-Cloud
 - Leverage Cloud Provider capabilities for service mesh and related components (Prometheus etc.)
 - Data Model for Infra/App Metrics/Alerts for ONAP Component Service Assurance
 - DCAE

THELINUX FOUNDATION

- Potential to simplify architecture and improve manageability & service velocity
 - Simplified Collection at Source
 - VNF: No VES Agent (Avoid recompiling VNF)
 - Edge Application: No App Libraries (Avoid recompiling Edge Application)
 - Collector Offload
 - Prometheus from Cloud Providers with Multi-Cloud Integration can provide VES Collector functionality
- Deliver value through Analytics Microservices

Service Mesh & Related Technologies ONAP Collaboration

Service Mesh – ONAP Collaboration Recommendation

Open Source (LF Networking etc.) Collaboration Recommendation

- OPNFV Clover Project (https://wiki.opnfv.org/display/PROJ/Clover)
 - Clover Project focus
 - Service Mesh for containerized workloads (VNFs etc.)
 - Collaboration Areas
 - Drive commonality on Service Mesh Architecture & Component Recommendation
 - Leverage automation tools for Service Mesh for ONAP Containerized Workloads (VNFs etc.) on K8S

Service Mesh in ONAP Deep Dive

Running Istio on a ONAP K8S Cluster

Just 6 Steps for running Istio -- https://istio.io/docs/setup/kubernetes/quick-start.html

NAMESPACE	NAME	READY	STATUS	RESTARTS	AGE
istio-system	istio-ca-75fb7dc8d5-dbl6l	1/1	Running	0	1d
istio-system	istio-ingress-8546966f58-j2lmp	1/1	Running	0	1d
istio-system	istio-mixer-566f68f5d6-g6w2h	3/3	Running	0	1d
istio-system	istio-pilot-fd8fb6957-mmm4t	2/2	Running	0	1d
kube-system	etcd-ramki-virtual-machine	1/1	Running	0	8d
kube-system	kube-apiserver-ramki-virtual-machine	1/1	Running	0	8d
kube-system	kube-controller-manager-ramki-virtual-machine	1/1	Running	0	8d
kube-system	kube-dns-86f4d74b45-mgzm5	3/3	Running	826	8d
kube-system	kube-flannel-ds-s72r7	1/1	Running	0	8d
kube-system	kube-proxy-wrzkn	1/1	Running	0	8d
kube-system	kube-scheduler-ramki-virtual-machine	1/1	Running	0	8d
kube-system	tiller-deploy-664858687b-hnbsn	1/1	Running	0	8d
onap	dev-kube2msb-584b9d9c75-jdjf7	1/1	Running	6	8d
onap	dev-msb-consul-797447d5f9-lzw9k	1/1	Running	0	8d
onap	dev-msb-discovery-776497ffd9-zn8cx	1/1	Running	0	8d
onap	dev-msb-eag-66dd455d4b-2pk5f	1/1	Running	0	8d
onap	dev-msb-iag-588956774f-87xln	1/1	Running	Θ	8d

