
OOM Casablanca Goals

Roger Maitland & James MacNider - Amdocs

May 23, 2018

Addressing ONAP Platform “Deployability” with OOM

• Highest priority for Operators
is “Deployability”

• Once past day 0 activities,
“Deployability” becomes life-
cycle management (LCM)

• OOM Casablanca will extend
the Beijing functionality as
described in this presentation

Note
Validation of Beijing release
incomplete – rework in
Casablanca likely

OOM Casablanca Highlights

New or Enhanced Functionality
• Storage Architecture
• DBaaS
• Isolated Deployments / Static Images
• Pod Placement Rules
• Geo-redundancy
OOM Related Activities
• Chart Ownership
• CICD

Storage Architecture

• ONAP deployments will be diverse
• Likely storage technologies:

� Private: Fibre Channel/iSCSI SAN/NAS,
Ceph/Gluster software cluster, etc

� Public: GCEPersistentDisk,
AWSElasticBlockStore, AzureFile,
AzureDisk, etc.

• Paradigm: Operators select Storage
Class, ONAP components consume
Persistent Volumes via Persistent
Volume Claims

• Enables: Restartability & Backup and
Restore

Data outside a Persistent Volume is Ephemeral

Database as a Service

Components that use the same database
technology, could share a single cluster with
separate schemas and credentials

Benefits:
• Reduces the ONAP platform footprint
• Common helm charts limit effort required by

individual projects
• Project teams share a common redundancy

strategy
• Simplifies cluster storage and management

across the deployment

Three Steps:
1. Common DB Charts:

� kubernetes/common/postgres
� kubernetes/common/mysql

2. Clustered DBs:
� kubernetes/common/mariadb-galera

3. Shared DBs:
� Common DB instance,

separate tables

Isolated Deployments / Static Container Images

Application container images should be ‘pre-baked’
• ONAP deployment must be possible without access to the open internet

� OOM enables redirection of the standard ONAP nexus with a 1-line change in OOM helm charts to
get to docker images hosted on an internal nexus repository

� onap/values.yaml: repository: nexus3.onap.org:10001
• No operations to install required packages during instantiation permitted
• All containers should be based upon on a small set of hardened and certified OS images
• Limit application-specific initialization where possible to reduce start times

� DB schema creation would be an example exception

Benefits:
• Minimize time to instantiate when healing, scaling or migrating components
• Limit impact of outages and upgrades
• Deployment reproducibility
• Increased platform security

Pod Placement Rules

• Kubernetes distributes Containers
to Nodes (physical or virtual)

• Currently largely unconstrained
� StatefulSet – auto anti-affinity

• Adding:
� Affinity / Anti-Affinity Rules
� DeamonSet – one / node

• Log Shipper / Logstash
• Consul Agent

� Resources - Memory / CPU
• Ensure sufficient resources

� nodeSelector – add zones
• Distribute to multiple locations

Geo-Redundancy

Distribution of ONAP
Components across a network is
required. Two methods:
1. Cluster Federation – a single

ONAP deployment is spread
across multiple federated K8s
clusters
� Need to solve communication with

duplicate components
2. MEF – two or more

independent (partial?)
instances of ONAP
cooperating via MEF I/Fs
� Existing ONAP functionality

West East
Federation
Control
Plane

1

2

Chart Ownership

The project teams will take formal ownership of the helm charts for their
projects in the Casablanca release
• OOM team will be primarily focused on deployment hardening, maintainability, and new features

Benefits:
• Project teams know best how to update the charts to address gaps for:

� Changes to configuration files
� Application scaling
� Managing nodeports

• Project teams will to be fully empowered to implement and test their (expected) Casablanca
requirements for:
� Software Upgrade and Roll-back support
� DB migration scripts (both forward and backward)
� Resource requirements for each container
� (Anti-)affinity rules

CI/CD

• Improve ONAP quality and predictability with Continuous
Deployment

• Enhance the current CD systems

� Centralized ONAP Helm repo (no need for local ‘make’)

� Cooperation with OPNFV Clover project

� Long lived CD system – changes applied as upgrades, failures removed
with roll-backs

� Kubemonkey to test resiliency

� End-to-end test suites continuously doing integration testing

• How about two simple rules?

1. All gerrit submissions must pass an CI/CD end-to-end test
suite.

2. The maximum size of a gerrit submission be constrained to
some reasonable number (~5000 SLOC?).

Simple but profound:

� Essentially forces all projects to work “upstream first”

� Dumping large submissions once a release would not be
supported

Dashboard from one of the CD systems

https://wiki.opnfv.org/display/PROJ/Clover
https://github.com/asobti/kube-monkey

More Information…

• OOM Wiki: OOM for Production-Grade Deployments
• OOM Documentation on ReadtheDocs

https://wiki.onap.org/display/DW/OOM+for+Production-Grade+Deployments
http://onap.readthedocs.io/en/latest/submodules/oom.git/docs/oom_project_description.html

