High Level Summary Points to Introduce the Sequence Diagrams

* The main SO participants in the sequence diagrams are a “service level” workflow, referred to as the “E2E Service Level Workflow”
in the diagrams, and a “VNF-level” workflow referred to as the “Create VNF Instance BB”, where “BB” stands for “Building Block”.

* The VNF-level workflow execution threads across all the various VNF types share the same participant lifeline because they all are
instances of the same generic SO BPMN based “building block” workflow. This building block’s runtime behavior is model-driven,
where the model is an instance structure derived from the corresponding VNF’s TOSCA service template.

* In asimilar manner, the E2E Service-level workflow is a generic SO BPMN based workflow whose runtime behavior is model-
driven, where the model is an instance structure derived from the corresponding Service’s TOSCA service template.

* The functionality performed by the “Create VNF Instance BB” MY F-level SO workflow includes much of that which is performed by
the “VF-C” participant in the “Instantiate” sequence diagram &t appears in the “Workflows” section above on this wiki
page. Thus one can think of the "Create VNF Instance BB" VNF-level SO workflow has having genericized this functionality and
pulled it into the SO component.

* Recognizing that different Service Providers may want to model VoLTE differently, | have provided two different TOSCA modeling
alternatives. The sequence diagrams are organized according to these TOSCA models. Note, however, that irrespective of the
TOSCA model, the sequence diagrams look basically the same. This is intended to illustrate the point that the workflows are
intended to be implemented in a “generic” manner, and not specific to any particular Service or VNF type. The model-driven
behavior of ONAP as illustrated in the sequence diagrams would support either TOSCA modeling approach with no code impacts.

* The sequence diagrams assume that there is a private VPN already established in the WAN, and that network already has presence
at each Cloud Zone via a set of pre-configured VLAN tags. Thus, all that is required is to assign one of these tags to each
instantiated VNF, and to configure the Compute Host via HEAT to access this network via that VLAN tag.

. !}lEooice that the TOSCA models interpret the VoLTE network VNF architecture such that vMME is considered to be part of the vEPC
ge”.

WB5674
Highlight

WB5674
Sticky Note
The wiki page being referenced is the VoLTE ONAP Use Case wiki page.

In the associated sequence diagrams, we assume that there is a private VPN
already established in the WAN, and that network already has presence at
VO LTE U se Ca se Va riation U Sed | N Th ese Exa m p | @S | each Cloud Zone via a set of pre-configured VLAN tags. All that is needed is
to assign one of these tags to each instantiated VNF, and to configure the
Compute Host via HEAT to access this network via that VLAN tag.

Edge Core
DC L DC

EBGP-EVPN

v

Control Plange L

Overlay ' yxLAN l

Underlay = OSPF

Note that this differs from the ONAP wiki diagram in that
VMME has been moved to the Edge DC

Modeling Example A:
VoLTE Modeled as a Service

Service Level

In this example “A”, VoLTE itself is modeled as a Service. Thus, creation of an
instance of “VoLTE” would entail creating instances the vIMS Core and Edge as well
as the VEPC Core and Edge. See modeling example “B” for an alternative approach.

VOLTE:
topology_template:
node_templates:

— vMME:
'Depends On

—= vSPGW:

PRl L EPDG:

PPEELS VPCRF:

Depends On vHSS:

Depends On —VSBC:

ﬁ .
lDepends On vPCSCF:

— vI/SCSCF:

Depends On

> VTAS:

groups:
VEPC_Edge:
members [
vMME
vSPGW
VEPDG]
VEPC_Core:
members [
vPCRF
VHSS]
vIMS_Edge:
members [
vSBC
vPCSCF]
viIMS_Core:
members [
vl/SCSCF
VvTAS]

VNF Level
(TOSCA or HEAT)

VMME: (Service Template)

VSPGW: (Service Template)

VEPDG: (Service Template)

VPCRF: (Service Template)

VHSS: (Service Template)

vSBC: (Service Template)

VvPCSCF: (Service Template)

vl/SCSCF: (Service Template)

VTAS: (Service Template)

VOLTE Service Instantiation (TOSCA Modeling Option A)

Generic_SO

E2E Sernvice Create VMF

AP| Handler n | Catalogue n Level Workflow Instance BB Decompose BB “ | Homing BB I |A&AI | | SDN Controller | ‘ App Controller
T

T
PUT(Servicelnstiance, |
ServiceType=\oLTE, |
I

]

I

ReguestParamsg)
L ERL RS T

VOLTE Service
Instantiation
(TOSCA Modeling

Exam P le A EE i e

This includes retrieving and parsing any substitution mapping
"Run Time" TOSCA Service Templates. This function applies
the RequestParameters to resolve any conditional properties,
to come up with a complete set of instance Node Types for this
request. Also included is determining the sequence between
the template Node Types based on the template content. This
set of instance data is retained as a Service Decomposition
structure and associated Resource Decomposition structures.
T T T

Note that this example must be updated to incorporate
the correct OMAP internal API names. For now only intuitive
names have been used for the sake of readability.

i
! PUT(Servicenstance,
| ServiceType=WolTE
| ReguestParams)

I

i GET(ToscaTemplate,
! ServiceType=VolTE)
C SR e n s

1

! Assign Service Instance
| Inventory Object UUID()

PUT {Service\nstancelnventnryobject,:Type:VoLTE,UUID)

|
Decompose(TOSCA_Template RequedtParams)
1

Parse Tosca

I
I
I
I
I
I
I
I
I
i Template Content()

| Generate Node
| Instance Sequence()
i

Success(DecompStructld)

"Homing" (placeholder) consists of determining the optimal &
cloud site in which to locate each Resource that must be
created. The homing function appends the "homing

solution" to the Resource Decomposition structures,

This "Homing Building Block" would invaoke SNIRO (not

shown) to perform the actual eptimization calculation.

Until SMIRO is incorporated into OMAP, a pre-defined

homing solution must be passed in to ONAP,

Perform Homing(DecomnpStructid.ReduestParams)

This sequence diagram illustrates SO

| T i
loop _/ [For Each VNF Hode Type as per the VoLTE TOSCA]

The "E2E Service Level Workflow"
determines the order of WVNF operations
(e.g.. first working the vMME, then the
VvSPGW, etc) from the Decomposition
Instance Structure.

T

D

behavior driven from a VoLTE service
instantiation request, assuming
TOSCA modeling example A

PUT (Wnfinstance, DecompStructld,
Type=<v¥nfType>)

| Assign Vnf Instance
! Inventory Object UUID()

\
h I I
| PUT [vnfinstancelnventofyObject. Type=<VnfType=,UUID)

Each WoLTE VNF is assumed to communicate with each other via pre-configured L2 vLAN |
access to a Private VPN, Hence among the network assignments would be the WLAN tag that the WNF
will use to access this VPN,

| Assign Vnf Instance A A
1 Network Resources(vnfuuUID) !

| GET (vnfinstanceNetwdrkResources VnfuuID)

h i
' Generate !
| HEAT =vnfType=> i
i
i

| POST (VNF_HEAT Template)

Start WnflvnfuuID)

|
I
I
I
I
I
I
PUT (WnfConfiguration, VnfUUID,RequestParams)
T
I
I
I
I
I
I
I
I
I
I
I

T
1
1| Note: not all operations are shown, such
Suceess() | as setting status in A&Al and SDN-C. B“
i
Successi) ‘ |
i i
Success() i i
‘ : ; ; ‘
APl Handler “ | Catalogue " E2E Service Create VNF Decompose BB “ | Homing BB “ |A&AI | | SDN Controller | . ‘ App Controller
Level Workflow Instance BB

1 . In this example “B”, vIMS Core et al are modeled as individual
M Od el | ng Exa m p l € B : Services. We want to show this example because we believe some
H service providers will want to reuse this infrastructure for wireline
VE PC an d VI M S Edge/co re M Od € l ed as Se rVICES and so would not want to tightly couple them to a VoLTE Service.

Service Level
VNF Level (TOSCA or HEAT)

VEPC_Edge:
topology_template: VMME: (Service Template)
node_templates:
pepends on ~ YMME: vSPGW: (Service Template)
‘ —= vSPGW:
fepencsOn : VEPDG: (Service Template)
vEPDG: vEPC_Core: : P
topology template:
node_templates: » VPCRF: (Service Template)
Dependsgg; VIITICS:EF VHSS: (Service Template)
vIMS_Edge: viSS

A

topology_template:
pology_temp VSBC: (Service Template)

node_templates:
—VSBC: vPCSCF: (Service Template)

Depends On
—> vPCSCF:

vIMS_Core:

topology_template: vl/SCSCF: (Service Template)
node_templates:

_ vI/SCSCF: VvTAS: (Service Template)

Depends On

—> VTAS:

vIMS_Edge Service Instantiation (TOSCA Modeling Option B)

Generic_SO

E2E Seniice Create VNF

‘ App Controller

| API Handlern | Catalogue “ Level Workflow Instance BB Decompose BB “ | Homing BB I |A&AI | | SDN Controller |
T

PUT(Servicelnstance,
ServiceType=viIMS_Edge,
RequestParams)

vIMS Service
Instantiation

(TOSCA Modeling
Example B)

Note that this example must be updated to incorporate
the correct OMAP internal API names. For now only intuitive
names have been used for the sake of readability.

i

PUT(Servicelnstance,
ServiceType=vIMS_Edge

RequestParams)

GET(ToscaTemplate,
ServiceType=vIMS_Edge)

Assign Service Instance
Inventory Object LLID()

PUT {Service\nstancelnventoryobject,:Type:vIMS_Edge,UUID)

i
|
i
'"Decompose" consists of parsing the TOSCA Service Template i
content to determine the complete set of Resource Node Types. [
This includes retrieving and parsing any substitution mapping I
"Run Time" TOSCA Service Templates. This function applies '
the RequestParameters to resolve any conditional properties, i
to come up with a complete set of instance Node Types for this
request. Alsoincluded is determining the sequence between
the template Node Types based on the template content. This
set of instance data is retained as a Service Decomposition
structure and associated Resource Decomposition structures.

|
Decompose(TOSCA_Template RequedtParams)
1

Parse Tosca

I
I
I
I
I
I
I
I
I
] Template Content()

| Generate Node
| Instance Sequence()

Success(DecompStructld)

"Homing" (placeholder) consists of determining the optimal &
cloud site in which to locate each Resource that must be
created. The homing function appends the "homing

solution" to the Resource Decomposition structures,

This "Homing Building Block" would invake SNIRO (not

shown) to perform the actual eptimization calculation.

Until SMNIRO is incorporated into ONAP, a pre-defined

homing solution must be passed in to ONAP,

This sequence diagram illustrates SO
behavior driven from a vIMS service

Perform Homing(DecomnpStructid.ReduestParams)

loop / [For Each VNF Hode Type as per the vIMS_Edge TOSCA]
1

The "E2E Service Level Workflow" &
determines the order of VNF operations
(e.g.. first working the vMME, then the
VSPGW, etc) frem the Decomposition
Instance Structure.

instantiation request, assuming TOSCA
modeling example B.

PUT (Wnfinstance, DecompStructid,
Type=<v¥nfType>)

1
| Assign Vnf Instance
! Inventory Object UUID()

\
h I I
| PUT [vnfinstancelnventofyObject. Type=<VnfType=,UUID)

Each viMS_Edge VINF is assumed to communicate with each other via pre-configured L2 viLAN |
access to a Private VPN, Hence among the network assignments would be the WVLAN tag that the WNF
will use to access this WPN.

| Assign Vnf Instance A A
1 Network Resources(vnfuuiD) !

| GET (vnfinstanceNetwdrkResources VnfuUID)

h i
' Generate !
| HEAT =vnfType=> i
i
i

| POST (VNF_HEAT Template)

Start WnflvnfuuiD)

|
I
I
I
I
I
I
PUT (WnfConfiguration, VnfUUID,RequastParams)
T
I
I
I
I
I
I
I
I
I
I
I

T
1
1| Note: not all operations are shown, such
Suceess() | as setting status in A&Al and SDN-C. B“
i
Success() ‘ |

i i

Success() i i
: ; ‘ ;

API Handler“ | Catalogue “ EZ2E Service Create VNF Decompose BB “ | Homing BB “ |A&AI | | SDN Controller | ‘ App Controller
Level Workflow Instance BB

VvEPC _Edge Service Instantiation (TOSCA Modeling Option B)

Generic_SO

E2E Service Create VNF
| API Handler“ ‘ Catalogue I Level Workflow Instance BB Decompose BB n | Homing BB n |A&A\ | | SDN Controller | -
T

App Controller

| PUT(Servicelnstance

VEPC Service e B
Instantiation

(TOSCA Modeling
Example B)

Note that this example must be updated to incorporate

T

I

I

I

I

i

I I

PUT(Servicelnstance, :
ServiceType=vEPC_Edge 1 the correct ONAP internal API names. For now only intuitive

)

I

I

I

I

I

I

I

I

RequestParams) names have been used for the sake of readability.

GET(ToscaTemplate,
ServiceType=vEPC_Edge)

i
i
i
|
Assign Service Instance }
Inventary Object UUID() |

Il

I

PUT (Senrice\nstance\nventoryobject,:Type:vEPC_Edge,uulD)

i

i

; if
"Decompose" consists of parsing the TOSCA Service Template h i
content to determine the complete set of Resource Node Types. || i
This includes retrieving and parsing any substitution mapping ; i
"Run Time" TOSCA Service Templates. This function applies i I
the RequestParameters to resolve any conditional properties, i
to come up with a complete set of instance Node Types for this
request. Also included is determining the sequence between
the template Mode Types based on the template content. This
set of instance data is retained as a Service Decomposition
structure and associated Resource Decomposition structures.

I
Decompose(TOSCA_Template,RequestParams)
I

arse Tosca
ernplate Content()

]

| Instance Sequence()
i

Success(DecompStructld)

*Homing" (placeholder) consists of determining the optimal e
cloud site in which to locate each Resource that must be
created. The homing function appends the "homing
solution" to the Resource Decompasition structures,
This "Homing Building Block" would invoke SNIRO (not

This sequence diagram illustrates SO
shown) to perform the actual optimization calculation.

Il
i
i
i
I
if
i
it
I
i
i
i
I
I | Generate Node
it
I
i
i
i
T
if
I
it
I
i
i

Perform Homing(DecormpStruct!d,RequestParams)

2| Semm————

loop / [For EachVNF Node Type as per the vEPC_Edge TOSC
| N

homing solution must be passed in to ONAP,
instantiation request, assuming TOSCA e !
modeling example B.

The "E2E Service Level Workflow"
determines the order of WNF operations
(e.g.. first working the vMME, then the
WSPGW, etc) from the Decomposition
Instance Structure.

PUT (Wnfinstance, DecompStructid,
Type=<VnfType>)

i |
| | Assign Vnf Instance
i ! Inventory Object UUID()
I
I
I
I

.
h
| PUT (wnfinstancelnventofyObject, Type= <WnfType=,UUID)

Each vEPC_Edge WINF is assumed to communicate with each other via pre-configured L2 vLAN |
access to & Private VPN, Hence among the network assignments would be the VLAN tag that the VINF
will use to access this VPN.

| Assign vnf Instance A |
| Network Resources(vnfUuID) !

b i
| Generate !
| HEAT <VnfType=> i
i
i

POST (VNF_HEAT_Templéte)

PUT (WnfConfiguration, VnfUUID RequastParam

Start VnftvnfuuiD) i

behavior driven from a VEPC Service i Until SMIRO is incorporated into ONAP, a pre-defined

I
I
I
I
I
i
I
I
I
I
I
| GET (VnfinstanceMNetwdrkResources VnfUUID) ! ! ! i
I
I
I
I
I
I
I
T
I
I
I
I
I
I
I

|
|
Success()]
i
I
I
I
I
I
I
I

R | I N N

T
Mote: not all operations are shown, such
as setting status in A&AIl and SDN-C.
Success() |
i
Success() i
; ; ; ‘
APl Handler“ ‘ Catalogue “ EZE Service Create VNF Decompose BB “ | Homing BB “ |A&A\ | | SDN Controller | . App Controller
Level Workflow Instance BB

