
Real Time Data Event Streaming & Processing (RESP)

ARC Presentation

Habib Madani Habib.Madani@huawei.com
Parviz Yegani Parviz.Yegani@huawei.com

April 24, 2018

Q&A Action Items
Q1: What are the End point Use Cases I & II?

A1: Use Case I is a simple smart end point scenario, showing streaming interconnect between publishers(producers) and subscribers(consumers). Use Case
II, however, is a full streaming, collection and analytics use case, representing an end-to-end real-time data pipeline for streaming via RESP proposed solution.

Q2: Why asynchronous communication?

A2: The DDS middleware handles asynchronous communications via a backpressure mechanism coupled with the DDS QoS feature configurations. This takes
the burden off the application code for handling any retries by enabling an end-to-end RESP-based data processing pipeline with backpressure capability (DDS<-
Akka<-Beam + Flink).

Q3: What do you mean by real-time?

A3: The DDS middleware enables end-to-end real-time pub/sub streaming for data-centric events from wire protocol to middleware through DDS QoS feature
settings (the QoS profile can be configured by taking into account the requirements of the user data (either real-time or near real-time)

Q4: Does DDS support the WAN traffic?

A4: Yes, it supports it very effectively, via the concept of “DDS Links”.

Q5: Does the existing DCAE flow change?

A5: No, this is complementary to the existing ONAP DCAE flows. Design-time and run-time enhancements are made to meet the RESP functional requirements
(S7,S11)

Q6: Message guaranteed delivery; how is this handled?

A6: DDS with proper QoS configuration ensures that any lost event to be delivered due to the “Eventual Consistency” capability.

Q7: Does VNF need to be updated?

A7: The VES collector is updated to handle DDS-based real-time streaming (both southbound and northbound). On the southbound a VNF (a sensor, etc) can
push data/measurements to the collector which in turn uses DDS to generate a real-time stream to be processed by the analytics engine.

What is RESP?

Real-time data event streaming and processing pipel ine comprised of:

• Real-time Event Streaming Middleware
- QoS-based reliable real-time end-to-end event streaming
- Non-blocking, highly available collection and routing of events
- Asynchronous pub/sub based communication
- Consistent synchronization to accurately represent network states
- Model-driven approach through data models for consistent structure

• Real-time Processing for Data Analytics
- Efficient and reliable processing of data in motion

(via reducing a huge amount of data influx through tiered deployment)
- In-memory very fast, efficient and reliable processing

• Geo-data Store and Synchronization
- Services that need states preserved with consistent geo-data event store and event streaming-based

data synchronization

Why RESP?

Collect and push to

Message Bus for Pull

API-based end-

point collection

End-Point

Message

Server

Real-time Data Event Stream->

Collection-> Aggregation, Filter-> Transformation->

Consumers

End-Point

Consumers
Consumers

End-Point
End-Point

End-Point
End-Point

End-Point

Consumers
Consumers

Consumers
Consumers
Consumers

Consumers

(Use Case I) Real-time Asynchronous Pub/Sub

(Use Case II) Real-time Pub/Sub and Processing

Pub/sub Event

DB/cache agent

Modeled logical data objects based pub/sub
stream achieve declarative system through
auto synchronization

Static API/REST
Pull

Data information
embedded in
message as text

ONAP Current Operation RESP Pipeline

Pub/sub topics

Dynamic strongly
typed event message-
based pub/sub

DDS

DDS

DDS

5

O
N

A
P

 A
rchitecture + R

E
S

P

Integration

VNF Requirements

Modeling (Utilities)

VNF Validation Program

R
E

S
P

RESP Proposal (1/3)
Building on DCAE Base Platform (DCAEGEN3)

DCAEGEN3: Focus on building a platform which is adaptable to changing environment
› Data Collection: interfaces keep evolving – Data Streaming, gRPC, etc
› Analytics: AI, Machine Learning, Capacity, Cost, Perf., … (real value-add)
› Common Platform : 5G (Network Slicing), Wireline, IOT, Cloud, etc
› ONAP Platform is used as a base to build from
› Flink: Real-time event streaming Analytics
› DDS: Real time Data centric middleware
› Beam: An advanced unified(Batch + Real-time) programing model
› Design-Time / Run-Time separation principles
› Microservices- based architecture
› Data Collector: collects data from the element (5G network elements, IOT apps,..)

o Events/traps, statistics, logs, control plane, data plane
› Data Storage: collected data will be stored
› Pipeline Design: transforms raw data into meaningful data

RESP Proposal (2/3)

DCAE stretch goal components

DCAE components

Non-DCAE stretch ONAP components

VM K8S Pods

SNMP

Trap
VES

PRH

Holmes

TCA

Mapper

CBS

DH

PG

Akka

Beam

Flink

PH

SCH

Inv

Analytics Tier

Collection Tier

… IoT Realtime

Usecase

MSrvc

DDS

VESS
e

rv
ice

 C
o

m
p

o
n

e
n

ts

P
la

tfo
rm

 C
o

m
p

o
n

e
n

ts

RESP proposed components

*DCAE R2 presentation

Realtime

Streams

CM

Building on DCAE Base Platform (DCAEGEN3)

vLB
OS

vFW

OS

Edge

DC

DDS Domain

Proxy

VES DDS TCA event

AKKA Actor Concurrent
Message Handling AKKA Actor

Concurrent Message
Handling

FLINK
FLINK

RESP

I5

DDS Real-time Streaming

Interfaces

Policy

Control Action

Mrsv1
Mrsrv2

M
ic

ro
se

rv
ic

e
s

DMaaP Kafka

DDS Event Bus

BEAM

CLAMP APPC/SDNC/VFC/MC

VES CollectorVES Collector

IoT

NOTE:
• IoT device/VNF can push DDS-

based event stream
• Proxy can push DDS-based event

streams with legacy backend
interface

RESP Proposal (3/3)
Building on DCAE Base Platform (DCAEGEN3)

› RESP a new functional entity for
DCAEGEN3 Platform

› RESP can co-exist with existing
Bus and ONAP components

› RESP impacts ONAP Design-
time and Run-time using ONAP
APIs (with extensions as
necessary)

› All ONAP components potentially
can communicate in real-time
with common library

I4

I2

I3

I1

I6

Ix

RESP – Data Analytics and Processing Pipeline
Natively with RESP, mechanisms are provided to

0. Native ONAP APIs leveraged with RESP related

metadata and model extensions/additions

1a. Ingress, Exactly-Once and Eventually Consistent

synchronization mechanism available with DDS-based

event streaming between peers.

1b. DDS provides fine-grained control over the QoS

setting for each of the entities involved in the system.

1c. Ingress and Egress Integration with DMaaP/Kafka Bus

and other ingestion needs

• Non-blocking and concurrent routing/handling of

data streaming (Akka)

• Handle bursty stream processing, in parallel and

quickly (Beam -> Flink)

2. Egress real-time DDS-based data stream publish

RESP Components
Cloud Native

DDS for Realtime Data Distribution BUS

› P2P Tiered Geo Distributed PUB/SUB (

Blood Stream)

› Rich QoS support for reliability, extreme

low latency support through light wire

protocol

› Asynchronous/Synchronous

› Strong Typing(binary), data model/IDL

› Inherent Security

› Discovery, Query and Filter

› Streams/Events/Logs/Payload

› Connectionless optimized

› Publisher/Consumer through a

Relationship model

› Reduce Chatter

Akka+Kafka for HA Collection

Framework

› Real-time Streaming and Batch

collectors

› Concurrent, Actor model, Non-blocking

› Distributed, Resilient, parallel

processing, Back Pressure

› Collection/Aggregation possible from

many streams

› Load Balancing and Partitioning with

reliability, HA and error handling

› Time Series and Other

Beam & Flink for Transformation &

Analytics Framework

DB Persistence Storage

� Unified Data Streaming Programming

Model and DSL and pipelining

� Realtime Streaming and Batch

Processing

� Rich Parallel processing with rich API

� Resilient Distributed Data processing,

with in-memory Cache analytics for

huge stream input

� ML analytics &Graph/R predictive

modeling and analytics

� Rich Query and Time Series

� Beam allows integration with other

runners (Spark, Storm)for

compatibility

� DDS Cache/Event Store

� Need based DB use for

backend store

� Geo Distributed

� Consistency(� Eventual) for

supporting statefull entities

� Backend Connectors for

integration of huge K,V store

11

RESP Design-time and Run-time Operations

On-boarding new

Platform components

Flink

Akka

enabled

MSrvc

DDS VES

Collector

DDS

Proxy

Collector

Beam

enabled

MSrvc

1. Inputs Output Configuration

2. TOSCA model Templates created

for Cloudify blueprint

3. Import into SDC

4. Saved in Catalog

5. Data Streaming

1. VES Event Data formats

created

1. DCAE template populate to

drive Use Case Microservices

(IoT, VoLTE, TCA, Other ..)

Platform On-boarding of

new Templates

Design Service

Creation
Runtime

1. DCAE Controller pushes

instantiations configurations

and policies for new services

as defined in the new DACE

Orchestration (Cloudify)

Blueprints

2. Run-Time VES Real-Time

Event processing by use cases

Microservices

P
la

tfo
rm

 D
e

p
lo

y
m

e
n

t

D
e

sig
n

 -T
im

e
 D

e
p

lo
y
m

e
n

t

D
e

sig
n

 -T
im

e
 D

e
p

lo
y
m

e
n

t

R
u

n
 -T

im
e

 D
e

p
lo

y
m

e
n

t

ONAP Gaps (1/2)

Real-time
Model-

driven data
stream

Collect &
Route

specific
data

reliably

Query,
Filter and
Join data

Guaranteed
processing of

data in
sequence and
exactly once

Perform
huge stream

of data
reliably and
efficiently in

real-time

ONAP
Applications

Rich Complementing Common Service Beyond a BUS

Real-time Data Streaming and Data Processing Pipeline

1. Real-time Data Model based event

Streaming for north to south

2. Collection real-time data event stream

and routing of stream for actionable

processing

3. SQL operations capability on the real-time

data stream

4. Exact once streaming of real-time event

data for sequential processing

5. Fire hose event data streams processing in

real-time and reliably

6. ONAP applications enablement through

real-time library-based pub/sub

ONAP Gaps (2/2)

MSB BUS DMaaP /Kafka DDS Real Time Streaming

Microservices Operations API

centric

N/A N/A

JMS capability to handle

microservices health operations

Pub/Sub Message oriented

middleware, JSON based payload,

centralized

Provides a rich Model driven binary Data centric

Pub/Sub Geo Distributed Domain based

capability to provide full microservices

interconnectivity beyond Java

No Native Data Synchronization No Native Data synchronization Logical data Objects, changes automatically

track to make the system track states and self

synchronizing

Client/server TCP UDP/TCP with a QoS based wire protocol for

optimization and reliability fine grain flow

control, for very fast binary data type delivery

and tracking of events

Concurrent, non-blocking, back-pressure

handling end to end real-time pipelined system

� Geo Distributed Global Data Centricity and
Synchronization

� Low latency Pub/Sub P2P, Broker(optional) and N2M

� Push to Subscribers

� Query and Filter on data-value

� Data Centric

� Best effort, last-n, reliable and exactly-once

� 20+ QoS settings

� Broker Based

� Pull from Cluster

� Opaque Data

� Message Centric

� At least once, at most once, exactly once

� Controlled reliability and durability

Comparison: DDS vs Kafka

› Configuration & Operations
o Artifact design and creation mapping to model-driven

network services/VNFs for pub/sub topics (e.g., VES
and other ingestion sources)

o A&AI – resource inventory
o Service and resource orchestration
o Ongoing real-time updates for new services and/or

changes to existing services

› Run-time Operations
o Real-time event streams based on pub/sub

configurations from VNF
o Main application Akka actor-based concurrent

handling of streaming event with DDS embedded
library real-time event streams, and cache DB store

o HA and error handling
o Real-time Beam SDK calls to Flink real-time analytics

tools

Interfaces
› API calls to push configuration

information to the RESP controller
o Pub/Sub topic push

⁻ Analytics
⁻ Filter, Search, Group by resources
⁻ Rules for actions for component interactions

› Input run-time real-time event
streams

› Output real-time event streams
› API calls (if needed)

RESP Interfaces and API calls (1/2)

RESP Interfaces and API calls (2/2)

DMaaP Kafka
0. DCAE Control components

• Driven through new

TOSCA blueprints by

Cloudify/Orchestration

1. DDS Enabled with VES Event

Streaming Topics

2. VES Collector

3. RESP Service Components

• Use Case Microservices

4. RESP Platform Components

• Flink with Beam API

5. RESP Microservices interact

with DMaaP/Kafka

CLAMP Policy

IoT

1

4

2

5

3
0

ONAP
RESP

Carrier Ethernet

vFW

vCPE

vLB

MPLS Core

Cloud DC

IaaS/PaaS/SaaS

IaaS
PE

PE

NPE

NPE

AGG

AGG

AGG

NID

Cust. Branch Office

vFW

vCPE

vLB

vFW

vCPE

vLB

NID

*Cust. Branch

Office

NID

Cust. Branch Office

ONAP
RESP

Domain 2

Domain 3

RESP instance receiving Pub/Sub

telemetry data from vLB, vFW, vCPE

DDS Domain-based Network Slicing Example
Enterprise Use Case

Domain 1

proxy

Mediation
collector

• Achieve a declarative model
• Virtual devices scale horizontally in vertical

customers domains addressing demarcated

handling for deployments, configuration , running

and operations

• Isolate Issues by Honey potting

• Deploy using red-blue army approach

• Unify heterogeneous systems with strong typing

support as ‘services’

• Multi-tenancy enabler

Domain 0

Domain 4

s

Thank You

s

Backup Slides

RESP Functional Description for Casablanca

Real time Data
Event Streaming &

Processing

Definition:

RESP is ONAP/DCAE subsystem that enables Fast Data Event Streaming, Fast Data Event Stream based higher level analytics and correlation for business and operations activities.

RESP functionality will allow for fast data based collection of performance, usage and configuration data; provides handling of fire-hose event source in real time along with

analytical processing for supporting operational decisions, trouble shooting and management; provides fast track results through pub/sub data event stream publications to rest of

the ONAP system for FCAPs and other functionality

Provided Interfaces:

- Interface 1: Data collection interface (provided by DCAE collectors, consumed by VNFs and others)

- Interface for various FCAPS data entering DCAE/ONAP.

- Interface 2: Deployment interface (provided by DCAE Deployment Handler, used by CLAMP and other northbound applications/services)

- Interface for triggering the deployment and changes of a control loop

- Interface 3: Configuration Binding Service

- Interface for querying the information of the services that are registered to DCAE Consul

- -Interface 4: Data collection interface (provided by RESP/DDS collectors VES, Proxy and others)

- Interface for various FCAPs, IoT other data entering DCAE/ONAP.

- Interface 5: Deployment interface (provided by DCAE/RESP Deployment Handler, used by IoT and other northbound applications/services)

- Interface for triggering the deployment and changes of a control loops, IoT TCA and other use cases

- Interface 6: Configuration Binding Service

- Interface for querying the information of the Fast Event based services that are registered to DCAE/RESP Consul

Consumed Interfaces:

- Interface 1: Data movement platform interface (provided by DMaaP)

- Interface for data transportation between DCAE subcomponents and between DCAE and other ONAP components

- This interface can also be used for publishing events to other ONAP components.

- Interface 2: Data enrichment interface (provided by A&AI)

- Interface used by DCAE collectors and analytics for querying A&AI for VNF information for the purpose of enriching collected raw data by adding information not

contained in original data.

- Interface 3: Service model change interface (Provided by SDC)

- Interface for DCAE/RESP Service Change Hander fetching control loop models and model updates for RESP apparatus (Akka enabled microservices, BEAM SDK, Flink,

TSDB)

Consumed Models: TOSCA models descripting IoT & control loop construction (e.g. collection and analytics apparatus)

• Data Collection interface

• Deployment Interface

• Config binding interface

• VNF/Proxy Fast Data event stream

• Data enrichment interface (A&AI)

• Service model change interface (SDC)

DCAE interfaces

leveraged & extended

DCAE interfaces

leveraged & extended

DDS for Geo Distributed Data Synchronization (DB)
• Figure 1 depicts cross DC deployment

• Scenarios 1-4 reflect the network link state
• The data flow across network tracked reliably for

both Deterministic and Non-Deterministic
network links

• Geo Data synchronization guaranteed through
Eventual Consistency for apps as shown in Figure to
provide Geo distributed Event store

• Light wire protocol allows for low latency times
in the order of < 1msec over connectionless
interconnect and with binary strongly typed data
with QoS for reliability

• Figure 2 depicts a DDS based application
deployment

• Shows efficient query & filtering capability
• Event DB store as Cache/persistent for logical

objects
• Very Rich meta-data information on each event
• Each App has an embedded library

Figure 1

Figure 2

apps
apps

apps
apps

apps
apps

Unifying Fabric – Microservices Centralized and Edge Interconnect
(Logical Object based State Synchronization)

• MSB BUS Internal and
External Event based BUS

• DDS fully supports intelligent
Interconnect needs for IoT
and SDN, PNFs, VNFs, a
unifying fabric

• Logical local objects at the
Publishers/Subscribers
dynamically reflect/ track
Endpoint
Telemetry/State/Other in real-
time asynchronously

• Centralized NB systems,
Controller/s, NE/VNFs,
Service Discovery, E2E
Operations all connected
through DDS Data Domains

• A Key DDS based
interconnects can be sharded
and tiered per Pub/Sub to
provide a microservices
loosely coupled env.

DDS RT. PUB/SUB communication BUS

Intelligent Service

End point

Controller/s

Circuit

Breaker

Circuit

Breaker

Intelligent Service

End point/NE

Service
Discovery/Registry

Orchestration/Tasks

End2END Service

Operations

DevOps

Policies

Monitoring

Logical Local Objects Reflecting

Endpoint

Logical Local Objects Reflecting

Endpoint

NE/VNF
Analytics

Logical Close Control Loop

through DDS

.

.

Tiered

Centralized/NB

OSS/CEM

MICROSERVICES

DB DB DB

DB

Query
Service

Stateful

Collector app

Asynchronous msg.

Synchronous msg.

DB/Persistence

App Specific

Microservices

Entity

VES Mapping
DDS for Common Data Bus RTDESP

Common Data model with declarative

IDL, Extensible types P2P Pub/Sub

Common Event Stream, and beyond

Same API exposed for all HW, OS

Language bindings (Java, C++,C,C#)

Reactive real-time Processing and Batch

Processing

Dynamic Discovery across Domains &

Topics accommodating common header

with profile creation through IDL , fulll

control

Distributed

Rich QoS policies, allow for fine grain

communication control beyond

Transport(very low latency support, jitter

support) . Many knobs for fine tuning

Concurrent , HA , Secure

Strong Type support, , application read(),

write() calls with specific data types, can

support different payload with defined

types (different protocols as payload)

Scalable end to end processing for edge,

Lake

Open standard and proven

Interoperability

Many to Many (tiered model), shards,

partitioning, Domain based

Query support for Real time filtering of

Events, Complex Event Processing, UDP,

TCP

Persistence/Store (Cache, DB)

Secure (SSL/TLS) Integrated collection and integrations

beyond Telemetry for heterogeneous

networks

Auto Data Endpoint changes discovered,

with high Priority (QoS)

Flexible extensible framework through

DDS enhance Agents and VNFs

VES Requirements Mapping

� Overall common Event Data model, Event Stream and

collection architecture

� OPNFV support for the VES Common Event Data Model

�Consisting of a Header and an Event Specific

Block, with additional Name/Value fields for

extensibility

�A VNF Event Stream (VES) Common Event Data Model

�A VES Agent that can collect the VNF Event

Stream data from the VNF and deliver it to the VES

Collector

�A VES Collector that can consume the VNF

Event Stream data, and store the data in a

database backend

�VES plugins for integration with OpenStack

infrastructure services such as Monasca and

Vitrage (

�Common Event Data Model:(Fault, Custom,

programmable), authentication, access

Core features DDS Kafka Kafka Streaming

In Memory Distributed DB
� Data/Object Centric DB

Store, with Data Query

Language support

Log based, Message Store,

no visibility at the Data

level

Query layer based on

Message Store, no visibility

at the Data level

Further DDS provides “Eventual

Consistency” based data synchronization

in Global Space providing consistent state

Integrated Efficient secure

publish-subscribe binary-

level communication

�
Asynchronous Pub/Sub

with distributed Domain

based partitioning, data

event Pub/Sub is strongly

typed(binary) and state

oriented

Text-based events, JSON

based encoding , overhead

communication and

processing

Text-based events, JSON

based encoding , overhead

communication and

processing

Further DDS DB cache and pub/sub are

intelligent, as DDS tracks state of the data

events stored. It allows for application to

become model driven through well

structure data models

System event reporting and

logging
� Data/Object Centric DB

Store, with Data Query

Language support

Rich Pub/Sub event

tracking, reporting and

logging with fine tuning

through knobs for

optimizing the data event

traffic

Relies on TCP for flow

control

Relies on TCP for flow

control

DDS provides rich event tracking metrics

for optimal data event traffic in the

network on both Publisher and

Subscriber end

ONAP Gaps for Distributed Streaming and Data Synchronization

ONAP Gaps for Distributed Streaming and Data Synchronization

Core Features DDS Kafka Kafka Streaming

Distributed

authentication and

access control

� Distributed

Authentication and

Access control

� Authentication � Authentication
DDS allows fine

grain access and

control Domain-

>Partition-> QoS/Topic-

> Subs/Pubs

Distributed

scheduling and

Processing

management

� Process

management is

present, DDS tracks

the Publishers and

Subscribers and re-

syncs data upon

recovery/re-start

Not present Not present **DDS auto

scheduling and re-

start is an overlay,

not present natively

DDS Edge
Domain 1

Edge
Processing

Center

DDS Edge
Domain 2

Location 1
Location 2

DDS Core
Domain

DDS
Global/Central

Domain

Core
Processing

Center

Global
Processing

Center

NE
NENE

NE

Edge
Processing

Center
Beam
Flink

Akka
Actor

Analytic/
Other
App

Collectors Kafka

Clustered, Distributed , Reliable, HA, Cloud Native

System Engineered to be SLA compliant

Achieve an Equilibrium
State through a Model
Driven Realtime event
Stream interconnect

End to End Geo-Distributed System (RESP)

Global/Central
Monitoring

System

Regional
Monitoring 3

Regional
Monitoring 1

Regional
Monitoring 3

DDS Global Domain DDS Regional
Domain 1

DDS Regional
Domain 2

DDS Regional
Domain 3

Region Domain 2

Region Domain 3

Region Domain 1

Regional
Monitoring

System

Access control
segregation for Global

data share

Geo-Distributed Tiered Deployment
(inter-Carrier Use Case)

VES Fast

Event Stream

DCAE & RESP Integration

VES Collector+

(DDS)

VNF’ VNF/PNF

DCAE

Controller

D
C

A
E

O
rc

h
e

st
ra

ti
o

n

IoT

Analytics Catalog

Pull/SNMP

TSDBFlink

Message/Data Router

(Akka)

Microservices

TCA VoLTE LB

Micro Services

registered and

managed through MSB

DDS Fast Event BUS

Proxy

Beam API

DCAE

Fast

Event Stream

Microservices

DCAE & RESP Integration

1. Data Streamed from
southbound devices

2. VES collector receives RT
stream & existing pull based
measured data (acts as a
proxy)

3. RT Stream can be directly
received by DMaaP with Akka
based routing

4. Microservices receive events
and perform analytics
processing using Flink
through Beam APIs

5. Flink processing(Beam)

6. Microservices return
processed result out of DCAE

7. As DMaaP Kafka/DDS event for
Policy etc

Note: both existing and new DDS
flows co-exist

VES Collector+

(DDS’)

VNF’ VNF/PNF

Event Stream

DMaaP+

Message/Data Router

(Akka)

DCAE

Controller

Measurement

Data

Event

Data

DCAE+ (RESP)

Event Handler

D
C

A
E

 O
rc

h
e

st
ra

ti
o

n

(DDS/Kafka)

Configuration and policy

KV
IoT

Flink

Analytics Framework

CDAP

DB

Beam

TCA VoLTE

Pull/SNMP
1

4

2

5
API

7

6

(Kafka/DDS)

LB

3

Micro Services

registered and

managed through MSB

vLB
OS

vFW

OS

Edge

DC

DDS Domain

Proxy

DMaaP

(Kafka)

VES DDS

TCA event

VES DDS

FM event

AKKA Actor Concurrent
Message Handling AKKA Actor

Concurrent Message
Handling

FLINK
FLINK

DCAE

DMaaP

(Kafka)

Policy

RESP

DMaaP

(Kafka)

APP-C

1

1

1

2 3

4

4

5

6
DDS Realtime Streaming

Event flow & LC

Action

ONAP RESP Logical Interface Flow

Collection & Current

Event flow & LC

• RESP Logical Software
building block tools

• DDS, Akka, Beam & Flink
• Figure shows a flow sequence

for RESP and some ONAP
components

a) A new end to end Realtime
event streaming flow

b) Current event flow can co-
exist

c) 2,3 internal RESP Routing
and Processing

d) 1,4,5,6 show external RT.
and current event flow Close
Loop

• VNF can push DDS based
event stream

• Proxy can push DDS based
event stream

CLAMP

App1 App2

Microservices

Real time pipeline processing

