
ONAP R4+ Architecture Update
Architecture Subcommittee (ARC) Presentation

Parviz Yegani – Tiger Team Report

October 9, 2018

R4+ Architecture Update

1. Generic NF Controller Architecture (GNFC)
- Mapping of interfaces for Dublin and beyond (R4+): work in progress.

- Agreed to remove all references to VF-C for now.

- Contributions needed to address GNFC and VF-C alignment, targeted for Dublin and beyond.

2. SDN-R (SDN-C) path to GNFC
- R4+ Architecture update to support SDN-R - work in progress.

3. ONAP SDK-Driven Sub-System Approach – SDK Libraries

- Work in progress.

4. Recursive Service Orchestration (Gil, AT&T)
- Defined all internal and external interfaces plus API Mapping (OIs/OEs).

- Details are captured in subsequent slides.

5. Domain Orchestrator (Abinash, Netcracker)

- See next few slides for details.

6. ONAP Modularization (Functional Decomposition) – work in progress

- Functional decomposition based on domain capabilities at different layers – This might be required as a long term
plan but we also need to address how we can expose well-defined APIs (standard APIs if possible).

- Plan is to prepare a draft architecture contribution for the upcoming ARC F2F meeting in Montreal

Topic #4: Recursive Service Orchestration (1/6)

Recursive Service Orchestration in ONAP (Gil)

• First part of the Gil’s original deck (slides 1-43):
› Background materials on “ONAP Orchestrator Functions - internal structure, services & resources,

NFs, interfaces/APIs, service level SLOs, etc”

› SDC Modeling Tool for Service Designer (service & resource level actors)

› Network Functions (VNFs/PNFs) as a Service Versus Allotment

› Decomposition/Homing/Instantiation (sequence diagrams)

› Two examples were considered: Simple Service (example 1) and Complex/Nested Service
(example 2)

› Modeling approaches - for each example service scenario two modeling approaches have been
proposed:

• Modeling Approach A – direct reference from higher-order service to lower-order service
(the resource controller in this case cannot make “network assignments” for the lower-order service in the context of the higher-order service),

• Modeling Approach B – indirect reference from higher-order service to lower-order service through a “Façade” object,
(Facade makes lower-order service appear as a resource to the higher-order service. This includes the presence of an SDNC to perform
assignments for the Façade resource.)

› The design details for nested services approach A (service level flows for
decomposition/homing/instantiation and service policy considerations) was presented last month.

• Second part of the deck (slides 44-60) focused on Façade resources using approach
B where services have resources only.

Orchestrator Functional Internal View (2/6)

Use of the Façade

Resource approach
would eliminate OI-7 in

lieu of using OI-8 for both

Allotted Resources and

Complex Services

Service Orchestration (3/6)

Nested Services w/ Façade Resources (4/6)

The scope for Dublin:
How to implement recursive orchestration for 5G. Agreed to consider the following:

› The façade resource

› Modeling implications

› What level of flexibility we should allow for orchestration

› Need to define some interfaces for proper interactions between different layers of the hierarchy of
nested services

Modular Orchestration & Homing (5/6)

• Modular Orchestration and Homing of Complex Services and Allotted Resources
› Illustrated via Service Instantiation Examples Using a Separation of Concerns Approach

• ONAP runtime support of a “Network Service” that has been onboarded into SDC and
invoked for instantiation via a SOL005 API. Work in progress

› ONAP should provide two Service Provider options with respect to application level configuration on a per-NF/per-
Service basis:

› Option 1: ONAP supports application level configuration of the NF in the context of the Service

› Option 2: An external OSS/BSS supports this application level configuration

› To minimize variability to vendors, ONAP should support onboarding of SOL001 VNF Descriptors. For Service
Providers who choose to do so, ONAP should also support onboarding of SOL001 Network Service Descriptors

› ONAP runtime support of an onboarded Network Service Descriptor should minimize changes to a Service Provider’s
OSS/BSS infrastructure that had been supporting the corresponding “end to end service”

› ONAP runtime support should allow Service Provider the option to either “plug in” a VNFM or not. The slides on the
wiki page provide descriptions of this proposal examples for both cases.

› To accomplish these needs, the ONAP runtime/internal model need not support a separate “object type” called
“Network Service”. Rather, the onboarding model of Network Service would be mapped to a standard ONAP
“Service” in the internal model. Depending on whether Option 1 or Option 2 is desired, this ONAP “Service” would
either be enriched to include application level configuration support, or not.

Orchestrator Issues (6/6)

Other issues raised so far:
› Recursive orchestration – it’s scope is bigger than Gil’s example discussions with VDF

› Platform enhancements via example use cases

› Globally scalable/deployable

› What SPs need is to deploy ONAP more widely

o Modularity is a longer term activity

o Deployability – short term focus

› End user group is being formed (VDF/Vz leading)

› User community need to help

o Requirements for deployability

o Sustainability of use cases

o List of gaps

› Platform enhancements: demonstrated by a given use case

› Use case should expand the feature (business driven) + prioritize the list of features

› Use case has to be additive (no overlapping scope) – need example that can show the gaps

Topic #5: Domain Orchestrator

Scope of Domain Orchestration (DO) work

The DO concept is under discussion (led by Abinash) – areas of focus:

› ONAP Mapping to Domain Orchestrator Concepts:

o Challenges,

o Transformation and

o APIs alignments to Standards

› Potential options for overcoming ONAP Deployment Challenges.

› How DO can be applied to ONAP?

› Identify operators’ requirements - Abinash is asking several tier-1 operators about their specific
requirements.

› There are different views/thoughts on DO in the community. These views need to be
harmonized/consolidated.

› It is good to assess what everyone is trying to achieve first.

› A set of resources to be orchestrated within a region/country or even a city. VDF views this as a more
generic set of resources.

› Requirements drive architecture work

› External APIs (external to both ONAP as a whole or ONAP components/projects)

Topic #6: ONAP Modularization - Straw Proposal

Action plan: Continue to use the modularization weekly call to drive the evolution of the
strawman proposal. We’re hoping to make the proposal ready for the Architecture F2F in
Montreal later this month (Oct. 29-31).

The owner(s) of each item (identified below) should have their drafts ready for group’s
review on a timely basis!!

› Modularization working assumptions – (Nigel/Dave)

› Define managed objects/Model – follow the CLI project approach (Andy/Manoj/Alex)

› Define ONAP functionality into functional components (Manoj/Kevin/Steve)

› Define a set of operational work flows across ONAP (eg, use Orange slide deck
presented in Beijing) (Kevin/Ramki/Alex/Margaret)

› Identify gaps between ext/int interfaces & models (Andy)

› Refactor based on gaps (all+PTLs). ARC F2F in Montreal

› Functional decomposition/modularization strawman proposal

(target deadline: Oct. 26th , 2018)

Modularity - What do we want to address? (1/5)

General (high-level) Comments

• Instead of using some bullet lists as a guide for the modularity discussions we need to be very specific
about the technical details as to how each software component once modified (upgraded to a new
version) is going to impact the entire system.

• “Modularity” is a way overloaded term today. There are two (perhaps distinctive) views wrt what
modularity means as far as ONAP is concerned:

o Option A) views ONAP as a common infrastructure using common components such as DB, TOSCA parser,
Data Management System, etc.

o Option B) views ONAP as a set of independent plug & play functional components. (We may want to
rephrase option B to focus more on integration of legacy components vs “rip & replace” such components.
Integrating an existing component into the platform seems to be a more practical approach that can add
tangible values). Of course, “rip & replace” of a target component could remain as a choice but should be
considered as the last resort (having a much lower priority than other options).

• Given the above two different views we must first agree to use common terminologies to properly
reflect the goals we are trying to achieve. Ie, are we going to use a common TOSCA parser to achieve
modularity (option A) or alternatively can we accomplish modularity by unplugging an ONAP
component (eg, SO, SDNC, A&AI, ..) and plugging in an orchestrator/SDNC/etc of operator’s liking
(option B)? This is very critical! Whether these two views are mutually exclusive or not is FFS.

Modularity - What do we want to address? (2/5)

Technical Comments

• Need to avoid duplicated effort to solve the same problem (eg, having multiple
TOSCA parsers in ONAP adds unnecessary complexity).

o Can’t we redesign the ONAP system having a single (common) parser? If so, what would be
the implications of this change on other ONAP components, the ones that rely on parser’s
functionality?

o Using a single (common) TOSCA parser would help eliminate any incompatibility issues. This
may have to do more with ONAP commonality than modularity.

o Rather than analyzing various parser implementation options for a much wider deployment
scenarios we may want to identify the low-hanging fruit (at least as part of our short-term
focus for the next release or so).

• Pending question: What are the key ONAP components (from operators’ point of
view) that need to be modularized? Tentatively agreed to start with SO (led by
Seshu).

• Modularization of other components will happen over time once there is enough
interest from community and proper resources are committed from participating
projects/PTLs.

Modularity - What do we want to address? (3/5)

Technical Comments (cont’d)
• Different versions of the same imported component

o An example imported component could be DB but we should standardize many common
components within the framework.

o What version (or a range of versions) of a software package we want to use and have a clear
understanding of what impact of an upgraded version is going to have on the entire system.

o Eg, if we’re going to upgrade the same tosca parser to the next version and there are multiple
components already using it (as a common service). How is this new version going to impact
the functionality of the other components? This has to be coordinated carefully across all
affected components so that we can eliminate any impact on the entire ONAP system.

o This is true for the DB as well. OOM is using DBaaS which will follow a similar logic wrt version
upgrade. Each component uses its own DB where it is well-coordinated with other components
through DBaaS as a common service.

o If tosca parser is upgraded to a new version and impacts multiple components, are we going to
force all these components to be upgraded in one release, multiple releases? How? This is FFS.

• The work on interface versioning is already in progress in ONAP. The discussion we’re
having here on versioning of software components would complement that work.

Modularity - What do we want to address? (4/5)

Technical Comments (cont’d)
• Enabling differentiators (operator, vendors)

o This item seems to be more related to the two views (option A vs option B)
mentioned earlier. However, we should focus more on the scope than the
granularity per se.

o Identifying (over time) the interface that are demarcation lines.
- Maybe internal to projects as well.

• Platform extensibility (innovative idea)
o We may want to address the platform extensibility by thinking of a new concept -

dealing with two types of functionally-equivalent Microservices implementations
(MS): a model-driven MS vs a custom-built MS.
o You can design a service via SDC using a well-defined model and the model-driven MS

would do a good job to perform the desired function.

o Due to the limitations of any model there could be a situation where an operator
encounters a new service type and would want to replace this model-driven MS with a
functionally-equivalent but custom-built MS which complies with the APIs. How this
option should be supported/implemented in ONAP is for further study.

Modularity - What do we want to address? (5/5)

• Service creation modelling tool unification:
- Are we going to use a single parser (based on TOSCA) or we will need to continue to use

other DM modeling tools like YANG, HEAT (eg, for modeling the NSD template)?
- Common look and feel, design rules, role-based, etc. across all the modules.
- Also ensure that the entire service design lifecycle works (design time / run time).

• Domain driven orchestration/controller that will drive unified data models
per domain to reduce integration costs.
- General domain specific down to vendor specific.
- Still model-driven.

• Integration ease: Reduce the complexity of the pairwise integration

• Other topics that came up during the discussion:
- Consistency on the external APIs and fragmented exposure

TT Recommendations for Dublin Architecture

Tiger Team recommendations for the Montreal F2F meeting (OCT 29-31):

› Focus on actionable recommendations that
o are achievable in Dublin and

o enjoy or are likely to enjoy widespread support in the community,

› Add/amend any agreements from the community

› Suggest any features/requirements that should be dropped because
o they're too vague,

o they're too ambitious for Dublin, or

o will create significant pushback.

R4+ Architecture Slides

ONAP Target Architecture
(High-Level Functional View)

Key Takeaways:

• Today, ONAP Architecture has the Controller Layer with 2 controllers – SDNC and GNFC. We need to consolidate into a

single generic NF controller – namely GNFC.

• SDNC, and APPC and VF-C should evolve to GNFC

• SDNC, and APPC and VF-C should consolidate code into CCSDK as a superset controller library for creating different

controller persona instances by Operators

Key Takeaways:

• Today, ONAP Architecture has the Controller Layer with 2 controllers – SDNC and GNFC. We need to consolidate into a

single generic NF controller – namely GNFC.

• SDNC, and APPC and VF-C should evolve to GNFC

• SDNC, and APPC and VF-C should consolidate code into CCSDK as a superset controller library for creating different

controller persona instances by Operators

DESIGN-TIME

Policy Creation & Validation

Analytic Application Design

V
N

F
 /

 P
N

F
 O

n
b

o
a

rd
in

g

Resource Onboarding

Service Design

Catalog

Recipe/Eng Rules & Policy Distribution

O
N

A
P

 O
p

e
ra

ti
o

n
s

M
a

n
a

g
e

r

Dashboard OA&M

ONAP External APIs

Common
Services

Application

Authorization

Framework

Logging

Policy

Framework

Active & Available

Inventory

External Registry

Generic NF Controller

Data Collection,

Analytics, and Events

Event Correlation

ONAP

Optimization

Framework

SDN Controller

Optional External Systems

Network Function Layer

Hypervisor / OS Layer OpenStack AzureVMwareAkaraino

…

3rd Party Controller

Kubernetes

VNFs

PNFs

Public

Cloud
Private

Edge Cloud

Private

DC Cloud

IPMPLS

M
a

n
a

g
e

d

E
n

v
ir

o
n

m
e

n
t

Orchestration

Micro Services Bus / Data Movement (see Note 1)

Closed Loop Design

Change Management Design

Design Test & Certification

CLIOSS / BSS ONAP Portal

Specific VNF Manager Element Management System

RUN-TIME

Common

Services

Multi-Cloud

Adaptation

U-UI

Others

C
C

S
D

K

Configuration & Life

Cycle Management

DESIGN-TIME

Policy Creation & Validation

Analytic Application Design

V
N

F
 /

 P
N

F
 O

n
b

o
a

rd
in

g

Resource Onboarding

Service Design

Catalog

Recipe/Eng Rules & Policy Distribution

O
N

A
P

 O
p

e
ra

ti
o

n
s

M
a

n
a

g
e

r

Dashboard OA&M

ONAP External APIs

Common
Services

Application

Authorization

Framework

Logging

Policy

Framework

Active & Available

Inventory

External Registry

Generic NF Controller

Data Collection,

Analytics, and Events

Event Correlation

ONAP

Optimization

Framework

SDN Controller

Optional External Systems

Network Function Layer

Hypervisor / OS Layer OpenStack AzureVMwareAkaraino

…

3rd Party Controller

Kubernetes

VNFs

PNFs

Public

Cloud
Private

Edge Cloud

Private

DC Cloud

IPMPLS

M
a

n
a

g
e

d

E
n

v
ir

o
n

m
e

n
t

Orchestration

Micro Services Bus / Data Movement (see Note 1)

Closed Loop Design

Change Management Design

Design Test & Certification

CLIOSS / BSS ONAP Portal

Specific VNF Manager Element Management System

RUN-TIME

Common

Services

Multi-Cloud

Adaptation

U-UI

Others

C
C

S
D

K

Configuration & Life

Cycle Management

Generic NF Controller Architecture

• Generic NF Controller configures and maintains the health
of VNFs/PNFs/services* (L1-7) throughout their life cycle.
‒ The Lifecycle Management Functions are a normalizat ion of the

controller aspects of VF-C and APP-C functions into a common,
extensible library

• Programmable network application management platfor m
‒ Behavior patterns programmed via models and policie s
‒ Standards based models & protocols for multi-vendor

implementation
‒ Extensible SB adapter set including vendor specific VNF-Managers
‒ Operational control, version management, software u pdates, etc.

• Manages the health of VNFs/PNFs within its scope
‒ Policy-based optimization to meet SLAs
‒ Event-based control loop automation to solve local issues near

real-time

• Local source of truth
‒ Manages inventory within its scope
‒ All stages/states of lifecycle
‒ Configuration audits

• Key Attributes of Generic NF Controllers

‒ Intimate with network protocols
‒ Manages the state of services

‒ Provide Deployment Flexibility to meet user scalabi lity / resilience
needs

Key

CE-x

CI-x

Controller External API

Controller Internal API

*How the services are to be handled is for further study

** Configuration Design Tool (CDT) to be integrated into SDC

***CE-6 not needed - see External Controller materials

Design Tool UI**

Configuration

Design Tool UI**

Run time

catalog

Run time

catalog

OOF (for queries)OOF (for queries) PolicyPolicy

Generic NF

Controller

Generic NF

Controller

Adapters

Service Logic Processing

ChefChef

Assigned Resources

Inventory:

Service* Topology

& VNF/PNF State

NetconfNetconf

API Handler

Active & Available

Inventory

Active & Available

Inventory

Service Design

& Creation

Service Design

& Creation

AnsibleAnsible OthersOthers…

OrchestrationOrchestration
Data Collection,

Analytics & Events

Data Collection,

Analytics & Events

Closed Loop Actions Inventory

Updates

Orchestration

• Configure

• Audit

• SW upgrade

• Scale in/out

• Stop/start

• Health check

• L4-7 Service Create

Supports Model-Driven Lifecycle Mgmt.Service

Logic

Service

Logic

Service

LogicService

Logic

Service

Logic

Service

LogicService

Logic

Service

Logic

Service

Logic

…

Artifact

Distribution

*Not E2E service view. The “Service” view in the

Generic NF Controller is limited its scope of control

Applications

VNFs

PNFs

Multi-
Cloud

Adapter

Multi-
Cloud

Adapter

Multi-VIM/CloudMulti-VIM/Cloud

MSB/Data Movement

MSB/Data Movement

M
S

B
/D

a
ta

 M
o

v
e

m
e

n
t

CE-2 CE-3

CE-5

External
System

Adapter (s)

External
System

Adapter (s)

External

3rd Party Controllers

Specific VNF Managers

Element Mgt. Systems

CI-2CI-1

CI-4
VNF Descriptors

Repository

Config Templates

Engineering Rules

Service Logic

Policy Cache/Event Match

Operational Tree/ConfigOperational Tree/Config

Tree (Service Model)

CI-7

CI-6

CI-3

CE-6

CI-5

CE-4

…

CE-1

CE-6 not needed***

Generic NF Controller – External/Internal Interface
Definitions

Interface Definitions

CE-1 Distribution of artifacts from Service Design and Creation – artifacts distributed to Run

Time Catalog, GNFC receives notification and pulls from Run Time Catalog

Note: Configuration Design Tool UI to be integrated into Service Design & Creation

CE-2 Service requests from Orchestration

ONAP Optimization Framework (OOF) queries for VNF state and available capacity

CE-3 Closed Loop action requests from Data Collection, Analytics & Events/Policy

CE-4 Inventory retrieval from Active & Available Inventory by Service Logic Processing engine

Inventory updates to Active & Available Inventory by Assigned Resources Inv

CE-5 Lifecycle management requests to Multi-Cloud (e.g., stop/start VM)

CE-6 Lifecycle management requests to an external controller or system that has responsibility

of the target VNF

CI-1 API Handler looks up or retrieves the corresponding Service Logic instance that maps to

NB service request (service/network yang)

CI-2 API Handler calls Service Control Processing to perform the Service Logic on the target

service or network

CI-3 Prior to CI-2, API Handler might query the (in-memory) Operational/Config Trees for the

network or service details (if already existing)

CI-4 Service Control Processing retrieves the Service Logic, Config Templates, Engineering

rules, and Policies as part of processing the requested action

CI-5 Service Control Processing queries and/or updates Operational/Config Trees as part of

making changes to the network (VNFs/PNFs)

CI-6 Service Control Processing requests adapter layer to update/configure VNF/PNF update

using the appropriate adapter for the VNF/PNF

CI-7 Service Control Processing queries and/or updates local Assigned Resources

Store/Inventory as part of making changes to the network (VNFs/PNFs)

Key

CE-x

CI-x

Controller External API

Controller Internal API

Configuration

Design Tool UI**

Run time

catalog

OOF (for queries) Policy

Generic NF

Controller

Adapters

Service Logic Processing

Chef

Assigned Resources

Inventory:

Service* Topology

& VNF/PNF State

Netconf

API Handler

Active & Available
Inventory

Service Design

& Creation

Ansible Others…

Orchestration
Data Collection,

Analytics & Events

Closed Loop Actions Inventory

Updates

Orchestration

• Configure

• Audit

• SW upgrade
• Scale in/out

• Stop/start

• Health check

• L4-7 Service Create

Supports Model-Driven Lifecycle Mgmt.Service

LogicService

LogicService

Logic

…

Artifact

Distribution

*Not E2E service view. The “Service” view in the

Generic NF Controller is limited its scope of control

Applications

VNFs

PNFs

Multi-
Cloud

Adapter

Multi-VIM/Cloud

MSB/Data Movement

MSB/Data Movement

M
SB

/D
a
ta

 M
o

v
e

m
e

n
t

CE-2 CE-3

CE-5

External
System

Adapter (s)

External

3rd Party Controllers

Specific VNF Managers

Element Mgt. Systems

CI-2CI-1

CI-4
VNF Descriptors

Repository

Config Templates

Engineering Rules

Service Logic

Policy Cache/Event Match

Operational Tree/Config

Tree (Service Model)

CI-7

CI-6

CI-3

CE-6

CI-5

CE-4

…

CE-1

CE-6 not needed***

GNFC – External Interface Details

Interface Definitions Beijing Rel. Casablanca Rel. Protocol

/Service

Comments

CE-1 Distribution of artifacts from Service Design and Creation SDC�[no GNFC] SDC � GNFC (trigger)

GNFC � Run Time Catalog (pull)

DMaaP

CE-2 Service requests from Orchestration

Queries from ONAP Optimization Framework (OOF) for

VNF state and available capacity

SO, Portal �[no GNFC]

OOF � [no GNFC]

SO, Portal � GNFC

OOF queries – not in scope?

REST Generic Request API. See next

slide for orchestration

requests for LCM actions.

CE-3 Closed Loop action requests from Data Collection,

Analytics & Events & Policy

DCAE � [no GNFC]

Policy – not in scope

DCAE � GNFC

Policy – not in scope

DMaaP

CE-4 Inventory retrieval from Active & Available Inventory by

Service Logic Processing engine

Inventory updates to Active & Available Inventory by

Assigned Resources Inventory

A&AI � [no GNFC] A&AI � GNFC REST

CE-5 Configuration requests for cloud infrastructure

networking

Lifecycle management requests to Multi-Cloud (e.g.,

stop/start VM)

Multi-Cloud – not in scope GNFC � M-Cloud REST

• Controllers are to be Model-Driven – APIs in Dev, Design, Run-Time catalogs

• Payloads: parameter values defined in the platform Data Dictionary (model/meta-data driven)

• CE-6 interface (to external controllers) is not needed and has been deleted. External controller will be interfacing to the whole

ONAP platform – via CE-1 thru CE-4

• Beijing Release does not have an implementation of GNFC

• For Casablanca it is recommended that VF-C and APPC begin to transition toward GNFC

SDN-Controller Architecture

• SDN Controller configures and maintains the health of VNFs/PNFs
for cloud networking (underlay/overlay) and WAN tra nsport
services* throughout their lifecycle

• Programmable network application management platfor m
‒ Behavior patterns programmed via models and policie s
‒ Standards based models & protocols for multi-vendor implementation
‒ Extensible SB adapter set supporting various networ k config protocols,

including 3 rd party controllers
‒ Operational control, coordinated state changes acro ss devices, source of

telemetry/events, etc.

• Manages the health of VNFs/PNFs/transport services in its scope
‒ Policy-based optimization to meet SLAs
‒ Event-based control loop automation to solve local issues near real-time
‒ Action executor for outer control loop automation

• Local source of truth
‒ Manages inventory within its scope
‒ All stages/states of lifecycle
‒ Configuration audits

• Key Attributes of Controllers
− Intimate with network protocols
− Manages the state of services
− Single service/network domain scope per instance

Key

CE-x

CI-x

Controller External API

Controller Internal API

*How the services are to be handled is for further study

** Configuration Design Tool (CDT) to be integrated into SDC

***CE-6 not needed - see External Controller materials

MSB/Data Movement

MSB/Data Movement

M
S

B
/D

a
ta

 M
o

v
e

m
e

n
t

OOF (for queries)OOF (for queries) PolicyPolicy

Service Control
Processing

SDN

Controller

NB Service/Network Yang Models

SB Device Yang Models

API Handler

Adapters

NetConf/

YANG

NetConf/

YANG

Multi-Cloud
Network
Adapter

Multi-Cloud
Network
Adapter

BGP LS/
PCEP

BGP LS/
PCEP OthersOthers…

Multi-VIM/CloudMulti-VIM/Cloud

Active & Available

Inventory

Active & Available

Inventory

Service Design

& Creation

Service Design

& Creation
OrchestrationOrchestration

Data Collection,

Analytics & Events

Data Collection,

Analytics & Events

Closed Loop Actions Inventory

Updates

OrchestrationArtifact

Distribution

External
System

Adapter (s)

External
System

Adapter (s)

External

3rd Party Controllers

Element Mgt. Systems

CE-2 CE-3

CE-5

Service Logic

Repository

Service

Logic

Service

Logic

Service

Logic

Service

Logic

Service

Logic

Service

Logic

Service

Logic

Service

Logic

Service

Logic

IP/VRF Assign

L2 Service Create

L3 VPN Service Create

SD-WAN Create

TE Tunneling

BGP Config

SW Upgrade

…

…

Configuration Templates

Service/Network Design &

Engineering Rules

Policies

VNFs

PNFs

OpenFlowOpenFlow

Assigned Resources Inventory:

Service* Topology &

VNF/PNF State

Operational Tree/

Config Tree

(Service Model)

CI-2

CI-4

CI-5

CI-3CI-1

CI-6

CI-7

*Not E2E service view. The “Service” view in the

SDN Controller is limited its scope of control

CE-6

CE-4

Design Tool UI**

Configuration

Design Tool UI**

Run time

catalog

Run time

catalog

CE-1

CE-6 not needed***

Note: Beyond Casablanca, SDNC functionality and software will begin to merge into GNFC

SDN-Controller – External/Internal Interface Definitions
Key

CE-x

CI-x

Controller External API

Controller Internal API

Interface Definitions

CE-1 Distribution of artifacts from Service Design and Creation – artifacts distributed to Run Time Catalog, SDNC

receives notification and pulls from Run Time Catalog

Note: Configuration Design Tool UI to be integrated into Service Design & Creation

CE-2 Service requests from Orchestration

Queries from ONAP Optimization Framework (OOF) for VNF state and available capacity

CE-3 Closed Loop action requests from Data Collection, Analytics & Events/Policy

CE-4 Inventory retrieval from Active & Available Inventory by Service Control Processing engine

Inventory updates to Active & Available Inventory by Assigned Resources Inventory

CE-5 Configuration requests for cloud infrastructure networking

Lifecycle management requests to Multi-Cloud (e.g., stop/start VM)

CE-6 Lifecycle management or configuration requests to an external controller or system that has responsibility

of the target VNF

CI-1 API Handler looks up or retrieves the corresponding Service Logic instance that maps to NB service request

(service/network yang)

CI-2 API Handler calls Service Control Processing to perform the Service Logic on the target service or network

CI-3 Prior to CI-2, API Handler might query the (in-memory) Operational/Config Trees for the network or service

details (if already existing)

CI-4 Service Control Processing retrieves the Service Logic, Config Templates, Engineering rules, and Policies as

part of processing the requested action

CI-5 Service Control Processing queries and/or updates Operational/Config Trees as part of making changes to

the network (VNFs/PNFs)

CI-6 Service Control Processing requests adapter layer to update/configure VNF/PNF update using the

appropriate adapter for the VNF/PNF

CI-7 Service Control Processing updates the local Assigned Resources Store/Inventory once network updates are

made successfully

MSB/Data Movement

MSB/Data Movement

M
SB

/D
a
ta

 M
o

ve
m

e
n

t

OOF (for queries) Policy

Service Control
Processing

SDN

Controller

NB Service/Network Yang Models

SB Device Yang Models

API Handler

Adapters

NetConf/

YANG

Multi-Cloud
Network
Adapter

BGP LS/
PCEP Others…

Multi-VIM/Cloud

Active & Available
Inventory

Service Design

& Creation
Orchestration

Data Collection,
Analytics & Events

Closed Loop Actions Inventory

Updates

OrchestrationArtifact

Distribution

External
System

Adapter (s)

External

3rd Party Controllers

Element Mgt. Systems

CE-2 CE-3

CE-5

Service Logic

Repository

Service

Logic

Service

Logic

Service

Logic

IP/VRF Assign

L2 Service Create

L3 VPN Service Create
SD-WAN Create

TE Tunneling
BGP Config

SW Upgrade

…

…

Configuration Templates

Service/Network Design &

Engineering Rules

Policies

VNFs

PNFs

OpenFlow

Assigned Resources Inventory:

Service* Topology &

VNF/PNF State

Operational Tree/

Config Tree

(Service Model)

CI-2

CI-4

CI-5

CI-3CI-1

CI-6

CI-7

*Not E2E service view. The “Service” view in the

SDN Controller is limited its scope of control

CE-6

CE-4

Configuration

Design Tool UI**

Run time

catalog

CE-1

CE-6 not needed***

SDK-Driven Sub-System – Libraries
(including CCSDK)

*Plugins/Adapters can include:

• 3rd party VNFM Drivers • 3rd party EMS Drivers

• 3rd party SFC Drivers • Ansible/Chef/Puppet

• Netconf/Yang • CLI

• SNMP • etc.

SDK Libraries

Orchestrators
Rackspace IBM Google

Orchestration Function SDK Multi-Cloud Adaptation SDK

Controllers OpenStack Azure AWSOSSs VNFs PNFs Multi-CloudμServices

Control Function SDK (CCSDK)

ODL

Imperative Models

BPMN orchestration
engine Sub-Models

TOSCA-Cloud
Translation/Mapper

Declarative Models

TOSCA orchestration
engine

Library of
Common Control/NFV Lifecycle Mgt. Functions

Rebuild VNF Configure
Network Config.Stop/Start

Audit

Upgrade

Scale

Svc Function ChainHeal

Library of
Common Cloud Translations (shims)

Telemetry Scale

HealRegister

Cloud Resource
Instantiation

LB …

SB API SDK
(Adapters)

M-Cloud APIs

etc.

NB API SDK API Handler

API Catalog

Library of Flows
• Service, Resource, Etc.

Orchestration APIs Controller APIs Cloud APIsAPI Configurator

Controller APIs

OSS APIs

μServices APIs

Netconf/Yang

Ansible

Collectors

OpenStack

Azure

AWS

API Catalog

ONOS Open
ROADM

…

…

Resource Orchestration APIs

Assign
Health Check

… …

• Improve agility

• Reduce SW footprint

• Reusable framework

• Enable technology swap

• Consistent NB/SB APIs

• Flexible platform extensions

Benefits

25

Controller Personas Based on CCSDK Libraries

CCSDK Libraries

Controller Personas
Examples
(created from CCSDK)

SDN-C Persona
NB API Controller APIs

Control Functions

ODL/
Service Control

Library

VNF Configure

Network Config

Svc Function Chain

Assign

SB

API Other AdaptersOSS APIs

μServices APIsNetconf/Yang
…

…

Mobility NF Controller Persona
NB API Controller APIs

Configure & LCM Functions

Service Logic
Engine

Library

SB

API

Ansible

μServices APIs
Netconf/Yang

Rebuild

Stop/Start

Audit

HealthCk
Scale
Heal

Other engines

3rd VNFM/EMS
3rd Party SFC

VNF Configure
Svc Function Chain

OSS APIs
Other Adapters

…

…

…

Wireline NF Controller Persona
NB API Controller APIs

Configure & LCM Functions

Service Logic
Engine

Library

SB

API

Ansible

μServices APIs
Netconf/Yang

Rebuild

Stop/Start

Audit

HealthCk
Scale
Heal

Other engines

3rd VNFM/EMS
3rd Party SFC

VNF Configure
Svc Function Chain

OSS APIs
Other Adapters

…

…

…

