

ONAP Micro-service Design Improvement

Manoj Nair, NetCracker Technologies

Micro Service Definition

Micro service architectural style is an approach to developing a single
application as a suite of small services, each running in its own
process and communicating with lightweight mechanisms, often an
HTTP resource API. These services are built around business
capabilities and independently deployable by fully automated
deployment machinery. There is a bare minimum of centralized
management of these services, which may be written in different
programming languages and use different data storage
technologies. -- James Lewis and Martin Fowler(link)

https://martinfowler.com/microservices/

Problem Statement

1. Micro Service Meta Model : Majority of micro services in ONAP are
created around functional boundaries without any well-set guideline
- Here guideline means the expression of structure and artifacts micro services

use in ONAP to ease development, integration and deployment– like
capability/endpoint registration, deployment configuration, dependencies,
resources requirements, non-functional characteristics etc.

2. Micro Service Boundaries : Boundaries of micro services based on
high cohesion, low coupling principle

3. Micro-Service Shared Concerns: How cross-cutting concerns of
micro services are handled
- Such as external dependency configurations like IP address, URL,

Authentication tokens etc, Logging, Health Check, Monitoring metrics, Tracing,
data persistence, distributed messaging etc.

1. Micro Service Meta Model

• Defines the key characteristics of a micro service

- Which can be used at development time tools for development of micro service
structure

- Which can be used at run time to discover the dependencies, capabilities

• Development time tools such as Xtend, Maven Archetypes etc. and
DM Languages like EMF,TOSCA, YANG (or general purpose
languages like XML,YAML): To be developed
- To generate structure of micro service

- Docker file for deploying micro service

- Registration configuration for registering with DMaaP (for topics) , MSB (for end
points)

- Kubernetes deployment artifacts

• Meta data placed in the deployment package of micro service is used
by the deployment/runtime frameworks : Partially available
- To deploy the micro service based on the deployment artifact

- To allocate resources based on the micro service requirements

- Resolve dependencies

- Register micro service capabilities and end points

- Register with DMaaP Topics

Development Time Tools (for example
Xtend or TOSCA Parser)

Micro Service Meta-model

D
ep

lo
ym

en
t

Fr
am

ew
o

rk
 (

e.
g.

 O
O

M
)

MS package
with
embedded
meta data

Skeleton creation

Key Message : Consistency in Micro Service Configuration Modeling

2. Micro Service Boundaries

• Boundary of a micro service is a subjective decision and varies

• In ONAP Micro Services are created based on functional boundaries for e.g. SDC
is built with 4 different micro service each focusing on a specific functional
capability – with tight dependency between each other

• Too much logic is built into BE – Titan Graph, SDC Processing , Catalog
Management etc. – Models, Design, Catalog, Onboarding/Distribution, Health
Check (Cassandra connection) Functionalities are built into same micro service
(BE) forming a monolith

Example SDC Micro
service View

Typical models for fixing micro service boundaries –
• Moving parts that change frequently (e.g. SDC Model, Policy Configuration, Thresholds in

DCAE/Clamp)
• Technology specific Polyglots (e.g. VFC)
• Functions/Features with similar non-functional requirements (e.g Caches, Graph, States)
• Transactions across micro services and consistency requirement (e.g. A&AI updates and

SDC Catalog updates)
• Security based isolation requirements (e.g. customer, service, resource and topology

information stored together in A&AI)

Key Message : Re-Structure Micro Services based on S3P and Business Context

µ µ µ

µ µ

µ µ µ

µ µ

3. Micro Services Shared Concerns

• ONAP Common Services layer consists of services that are shared across micro services like Logging,
AAF, DMaaP, MSB etc. which are set of micro services in itself.

• Shared concerns can further extended to be a platform layer for micro services. Platform layer for micro
services can host set of common needs of micro services which can be technology specific or neutral.

• In addition to the container orchestration/scheduling and health check/monitoring , it will be convenient
to use a shared platform layer so that
- Distributed concerns of micro services are hidden in the platform layer which gives location transparency

- Can centrally control the S3P aspect of micro services rather than each micro service handling it independently

- Work transparently across container orchestration technologies like Swarm, Kubernetes or VM Orchestration Technologies
like open stack

- Isolate micro services from infrastructure layer intricacies

• Note : Platform layer may have implication on the deployment model (Greenfield or Brownfield) in customer premise where in ONAP need to interwork with existing micro services. Also platform
layer make sense if there are many micro services that need to be managed

Openstack

µ µ µ

µ µ

Platform Layer

ONAP 1 ONAP 2 ONAP 3

Other Private Cloud Rackspace

Key Message : Portability of micro services and MS focus on core domain (can we use a PaaS)

Learning from Opendaylight 1/2

Network Elements

Applications

Abstraction Layer

SB Protocol PCEP OF x.y

Network Model
REST /NETCONF

Libs Libs

Network

Topology

Links Nodes Paths

NE … NE NE

System Flows RIB

Table … Table Table

…
Flow Flow Flow

Config Stats

Tunnels …

NE

BGP-LS
Libs

OF-Config
Libs Libs

REST API API API ALTO

Verifier Plugin

Notifier Plugin

Plugin

…

OpenDaylight MD-SAL –
Platform logic enabling the
Development and Run time
Framework

Projects developed as multiple
micro services register with
MD-SAL platform – about
capabilities, interfaces, entities
etc. Each project is modelled
using YANG and compiled to
create skeleton code

MD-SAL takes care of data
storage , cluster data
consistency, sharding,
interaction between micro
services, set of tools for
project skeleton

Reference: Opendaylight MD-SAL Architecture

Learning from Opendaylight 2/2

• Model Driven Service Abstraction Layer (MD-SAL) is base framework used in Opendaylight

• SAL is modeled by YANG

• SAL supports two formats of code generation based on YANG Models

- Binding-independent format:

• Data and functions calls independent of generated Java language bindings

• Data and functions calls expressed in neutral DOM-like model

• Typically used in framework tools, South bound plugins

- Programmatic (Binding-aware) format:

• APIs generated from YANG models

• APIs represented in Java as generated classes

• Typically used for developing applications or services

• SAL has built in brokers to read/write data from data store, invoke rpc calls, publish/subscribe
notifications.

• SAL also contains a Configuration Sub system for micro services to register and search
capabilities, apply initial configuration.

Our Proposal

• Bring in consistency in expressing micro service configuration while
allowing freedom of choice. – Several reference implementation exists
for example yang based model for ODL , Xtend, TOSCA etc.

• Be more prudent in defining micro service boundaries so that
refactoring of code becomes easy for meeting S3P and carrier grade
performance

• Enable portability of micro services by separating out the
infrastructure requirements and configurations from core MS logic –
through development of a platform layer) – PaaS Solutions as one
option

s

Thank You

