
ONAP Common Versioning Strategy 
(CVS) for APIs

Dana Bobko, AT&T
dw2049@att.com

April 11, 2018



Agenda

• Executive Summary

• Goal of the ONAP API Common Versioning Strategy (CVS)

• Implementing Semantic Versioning for APIs

• API URLs

• API Backwards Compatibility (BWC) Policy

• API Custom Headers and Behavior (4 slides)

• Swagger and Cataloging

• Swagger Guidance



Executive Summary

At a high-level, these are the objectives of the ONAP Common Versioning Strategy (CVS):

• Implement semantic versioning (MAJOR.MINOR.PATCH) for APIs

• Implement pre-defined custom headers to communicate MINOR, PATCH, and LATEST VERSION

• Align URLs to include only the MAJOR version

• Adopt a BWC policy for APIs that is current MAJOR release minus 1 year

• If necessary, refactor APIs to support the concept of MINOR releases

• Documentation using Swagger using the guidance provided



Goal of the ONAP API Common Versioning Strategy (CVS) 

The goal of the ONAP API CVS is to standardize API versioning, establish a backwards 
compatibility (BWC) policy, and expedite development/testing of ONAP APIs:

• APIs will be “speaking the same language” in terms of how versions are characterized by 
employing the semantic versioning methodology.

• APIs can be released as MINOR versions, instead of a MAJOR version each release, which will 
expedite testing and minimize development introducing breaking changes.

• An established BWC policy limits how long previous versions need to be active/available.

• API clients can target specific versions and servers can evolve APIs without breaking existing 
clients (within the BWC timeframe).

• Lay the foundation for API cataloging, consistent Swagger documentation, and automated 
compatibility/dependency matrices.



Implementing Semantic Versioning for APIs

• Utilizes the same semantic versioning methodology that is being used for ONAP’s Release 
Versioning Strategy; therefore, development teams are familiar with the definition of the 
methodology.

• For a given a version number, MAJOR.MINOR.PATCH, increment the:

- MAJOR position when you make any incompatible API or component change

- MINOR position when you add functionality in a backwards-compatible manner

- PATCH (or BUILD) position when you make invisible (and thus backwards-compatible) bug fixes

• Details of the specification can be found at http://semver.org/



API URLs

• The URL shall only contain the MAJOR version number to minimize changes in the URL for 
MINOR and PATCH releases, assuming MINOR.PATCH releases are BWC.

• The structure of the URL shall be as follows, where version is placed after the "service" or API 
name:

…/root/{service or API name}/v{MAJOR version number}*/{resource path}

Example: {hostname}/aai/resource/v14/complexes 

*Note: "v" should precede the MAJOR version number in the URL. Service or API name is not the 
resource; it is intended to group of set of related resources.



API BWC Policy

• API BWC shall be defined for MAJOR releases as the current release - 1 year. In other words, if an API is 
currently at 1.12 and a MAJOR release occurs to increment the version to 2.0, 1.12 (which is BWC for 
versions 1.0-1.11) must be functional/available for the period of 1 year after 2.0 is released.

• API owners shall ensure the previous MAJOR release remains available and functioning, in its last available 
production state, for the period of the BWC policy.

• MINOR releases shall be not time or release-based, as they are assumed to be BWC.

• API owners shall ensure no end-to-end services break with the deprecation of an API, due to the BWC Policy. 
End-to-end services includes, but is not limited to, VNFs, PNFs, Networks, Allotted Resources, etc.



API Custom Headers and Behavior /1

• Three custom headers shall support versioning in 
APIs: 

- X-MinorVersion, 

- X-PatchVersion, and 

- X-LatestVersion.

• The request from the client shall not break, if the 
headers are absent in the request.

• The server shall employ logic to fallback1 to the 
MAJOR version of the API, in the event that X-
MinorVersion is not provided.

• Clients shall ignore additional values from the 
payload in the response, if provided.

- It shall be explicitly specified in the interface contract 
that a server may increment a MINOR version and 
add additional fields.

- The client shall be capable of handling this type 
of change in contract, if they remain on a previous 
MINOR version.



API Custom Headers and Behavior /2

Header Name Specification

X-MinorVersion • Used to request or communicate a MINOR version back from the client to the server, and from the server back to the client

• This will be the MINOR version requested by the client, or the MINOR version of the last MAJOR version (if not specified by the 

client on the request)

• Clarification: This will always be the MINOR version requested by the client - OR - if the client does not specify, it will default back 

to the very first MAJOR version of the server. For example, if the server is on 1.1 and the client does not send X-MinorVersion, the 

API call will default to 1.0 which makes the MINOR version = 0. This lets the client know they are not receiving the latest version, 

and they will know because X-LatestVersion will notify them.

• Contains a single position value (e.g. if the full version is 1.24.5, X-MinorVersion = "24")

• Is optional for the client on request; however, this header should be provided if the client needs to take advantage of MINOR 

incremented version functionality

• Is mandatory for the server on response

X-PatchVersion • Used only to communicate a PATCH version in a response for troubleshooting purposes only, and will not be provided by the client 

on request

• This will be the latest PATCH version of the MINOR requested by the client, or the latest PATCH version of the MAJOR (if not 

specified by the client on the request)

• Clarification: This will always be the PATCH version the server is running.

• Contains a single position value (e.g. if the full version is 1.24.5, X-PatchVersion = "5")

• Is mandatory for the server on response

X-LatestVersion • Used only to communicate an API's latest version

• Is mandatory for the server on response, and shall include the entire version of the API (e.g. if the full version is 1.24.5, X-

LatestVersion = "1.24.5")

• Used in the response to inform clients that they are not using the latest version of the API



API Custom Headers and Behavior /3a

Comprehensive use cases should be provided on the Wiki so the expectation is set for when a MAJOR.MINOR.PATCH 
should be incremented.



API Custom Headers and Behavior /3b



Swagger and Cataloging

• ONAP is already using Swagger to document APIs.

• There is an opportunity to possibly leverage Swagger to drive cataloging efforts, through the use of 
tags in the metadata to indicate API versions (and Release versions APIs belong to).

• A centralized catalog could be leveraged to automate the decision-making for release 
dependencies and impacts.

• Versions could be easily queried from a catalog/centralized location to communicate when a client will 
be impacted by API evolutionary changes.

• The ability to generate comprehensive compatibility matrices would provide insight into how a particular 
change in an API would affect clients and other platform components.



Swagger Guidance

• All components shall use Swagger 2.0. The specification may be found here. OpenAPI 3.0 is on the roadmap.
• Swagger files shall be generated at build time, and be placed in a centralized repository.

• Within the Info Object, the following annotations are included in the Swagger specification and shall be required, even if they 
are optional in the Swagger spec:

title 
description
version - fully-qualified version number of the Swagger file (ex: 1.4.18)

• Within the Info Object, the following are extensions of the Swagger specification and shall be required:
x-planned-retirement-date - use YYMM; string type. This is the date that the API shall be deprecated, based on the BWC 

Policy. APIs may be active after their retirement date, but are not guaranteed to remain in production. An API retirement 

may be pushed out to accommodate BWC for clients.

x-component - SDC, SO, etc., or the mS name; string type. This is the component that owns the API.

• Under the Path, the following shall be required:
x-interface info - this contains two attributes:

• api-version - fully-qualified version number of the API (ex: 1.3.6); string type. This is the version of the API. This 

differs from the version in the second bullet above. 

• last-mod-release - in ONAP, use release name. This is the last release that the API was modified in.

• Within the Path Item Object, the following are included in the Swagger specification and shall be required:
description - string
parameters

• required - boolean
• type – string


