@ ONAP

OPEN NETWORK AUTOMATION PLATFORM

ONAP R4+ Architecture Update

Architecture Subcommittee (ARC) Presentation

R4+ Architecture Update

1. Generic NF Controller Architecture (GNFC)

- Mapping of interfaces for Dublin and beyond (Rs+): work in progress.
- Agreed to remove all references to VF-C for now.
- Contributions needed to address GNFC and VF-C alignment, targeted for Dublin and beyond.

2. SDN-R (SDN-C) path to GNFC
- Ra+ Architecture update to support SDN-R - work in progress.

3. ONAP SDK-Driven Sub-System Approach - SDK Libraries

- Work in progress.

4. Recursive Service Orchestration (Gil, AT&T)
- Defined all internal and external interfaces plus APl Mapping (Ols/OEs).
- Details are captured in subsequent slides.

5. Domain Orchestrator (Abinash, Netcracker)

See next few slides for details.

6. ONAP Modularization (Functional Decomposition) - work in progress

- Functional decomposition based on domain capabilities at different layers - This might be required as a long term
plan but we also need to address how we can expose well-defined APIs (standard APIs if possible).

Plan is to prepare a draft architecture contribution for the upcoming ARC F2F meeting in Montreal

A1 THELINUX FOUNDATION '© ONAP -

TTTTTTTTTTTTTTTTTTTTTTTTTTT

/
A

Topic #4. Recursive Service Orchestration (1/6)

Recursive Service Orchestration in ONAP (Gil)

* First part of the Gil’s original deck (slides 1-43):

> Background materials on “ONAP Orchestrator Functions - internal structure, services & resources,
NFs, interfaces/APls, service level SLOs, etc”

> SDC Modeling Tool for Service Designer (service & resource level actors)
> Network Functions (VNFs/PNFs) as a Service Versus Allotment
> Decomposition/Homing/Instantiation (sequence diagrams)

> Two examples were considered: Simple Service (example 1) and Complex/Nested Service
(example 2)

> Modeling approaches - for each example service scenario two modeling approaches have been
proposed:
Modeling Approach A — direct reference from higher-order service to lower-order service
(the resource controller in this case cannot make “network assignments” for the lower-order service in the context of the higher-order service),
» Modeling Approach B — indirect reference from higher-order service to lower-order service through a “Facade” object,

(Facade makes lower-order service appear as a resource to the higher-order service. This includes the presence of an SDNC to perform
assignments for the Facade resource.)

The design details for nested services approach A (service level flows for
decomposition/homing/instantiation and service policy considerations) was presented last month.

» Second part of the deck (slides 44-60) focused on Facade resources using approach

B where services have resources only.
1 THELINUX FOUNDATION @ ONAP s

TTTTTTTTTTTTTTTTTTTTTTTTTTT

A%

Orchestrator Functional Internal View (2/6)

SO-SO communication within
a single ONAP instance is via
Micro Services Bus.

Data Collection,
External API . Analytics, and Events
Event Correlation

API Handler

Map Request Data to Recipe Track Request
& Invoke BPEL Execution Requests Handler

o4 I ors e .
I Optimization

Framework

y Orch Execution Engine (BPMN/TOSCA)

-
.

LT R
| Complex Services case

0I-15

1
i
1
L]
i
1
i
!
I
1
1
i
1
|}
1
[}
1
-
!
1
[
1
1
H
T
1
1
1
[
1
1
i
]
1
[
!
1
1
1
1
[}
1

~
O
Q
-+

CITHELINUXFOUNDATION

Use of the Fagade

Resource approach
would eliminate OI-7 in
lieu of using OI-8 for both
Allotted Resources and
Complex Services

Pz N
S ONAP

Service Orchestration (3/6)

- Example 2: Modeling Approach B
 “Services Have Resources” (Only)

e Indirect Reference from Higher-Order Service to Lower-Order
Service Through a “Facade” Object. Which Makes Service X
Appear as a Resource to the Higher-Order Service W.

This includes the presence of an SDNC to perform assignments for
the Facade Resource.

See next slide __

TTTTTTTTTTTTTTTTTTTTTTTTTTT

CI THELINUXFOUNDATION

Nested Services w/ Facade Resources (4/6)

Meeting notes (last week's call, 2018-07-30): Gil presented the second part of the ATET “Nested Services” proposal (shides 44-60) focusing on example 2: Modeling Approach B,
In this approach the nested service decomposition is modeled via the concept of “Facade” that captures the indirect interactions between the higher-order service (service W)
and lower-order service (service X).

More specifically, service X in this example uses facade as a wrapper to appear as aresource to service W, This would include the presence of a controller (g, SDNC) to perform assignments

for the Fagade resource, like any other resource allocations (VNFs, PNFs) required during service instantiation process (assign, create, configure). In this case, service X is viewed as a NF (a black
box with its SLOs exposed| and the controller assigns facade resources (VNFs/PNFs) for service X in the context of service W. If fagade resourcas associated with service X is hosted by a non-ONAP
provider (e, a partner provider) then this approach might be a good fit for the VOF SO/DO orchestration federation use case (VOF & OpCos).

The scope for Dublin:

How to implement recursive orchestration for 5G. Agreed to consider the following:
The facade resource

Modeling implications

What level of flexibility we should allow for orchestration

Need to define some interfaces for proper interactions between different layers of the hierarchy of
nested services

vV VvV VvV Vv

A1 THELINUX FOUNDATION '© ONAP

TTTTTTTTTTTTTTTTTTTTTTTTTTT

/
A

Modular Orchestration & Homing (5/6)

* Modular Orchestration and Homing of Complex Services and Allotted Resources

>

lllustrated via Service Instantiation Examples Using a Separation of Concerns Approach

 ONAP runtime support of a “Network Service” that has been onboarded into SDC and
invoked for instantiation via a SOLoos APl. Work in progress

>

ONAP should provide two Service Provider options with respect to application level configuration on a per-NF/per-
Service basis:

Option 1: ONAP supports application level configuration of the NF in the context of the Service
Option 2: An external OSS/BSS supports this application level configuration

To minimize variability to vendors, ONAP should support onboarding of SOLoo1 VNF Descriptors. For Service
Providers who choose to do so, ONAP should also support onboarding of SOLoo1 Network Service Descriptors

ONAP runtime support of an onboarded Network Service Descriptor should minimize changes to a Service Provider’s
OSS/BSS infrastructure that had been supporting the corresponding “end to end service”

ONAP runtime support should allow Service Provider the option to either “plug in” a VNFM or not. The slides on the
wiki page provide descriptions of this proposal examples for both cases.

To accomplish these needs, the ONAP runtime’/internal model need not support a separate “object type” called
“Network Service”. Rather, the onboarding model of Network Service would be mapped to a standard ONAP
“Service” in the internal model. Depending on whether Option 1 or Option 2 is desired, this ONAP “Service” would
either be enriched to include application level configuration support, or not.

A1 THELINUX FOUNDATION '© ONAP -

/
A

TTTTTTTTTTTTTTTTTTTTTTTTTTT

Orchestrator Issues (6/6)

Other issues raised so far:

> Recursive orchestration - it’s scope is bigger than Gil’s example discussions with VDF
> Platform enhancements via example use cases

> Globally scalable/deployable

> What SPs need is to deploy ONAP more widely

0 Modularity is a longer term activity

0 Deployability - short term focus
> End user group is being formed (VDF/Vz leading)

> User community need to help
0 Requirements for deployability
0 Sustainability of use cases

0 List of gaps
> Platform enhancements: demonstrated by a given use case
> Use case should expand the feature (business driven) + prioritize the list of features

> Use case has to be additive (no overlapping scope) - need example that can show the gaps

A1 THELINUX FOUNDATION '© ONAP s

TTTTTTTTTTTTTTTTTTTTTTTTTTT

/
A

Topic #5: Domain Orchestrator

Scope of Domain Orchestration (DO) work

The DO concept is under discussion (led by Abinash) - areas of focus:

> ONAP Mapping to Domain Orchestrator Concepts:
0 Challenges,
0 Transformation and

0 APIs alignments to Standards
> Potential options for overcoming ONAP Deployment Challenges.
> How DO can be applied to ONAP-

> ldentify operators’ requirements - Abinash is asking several tier-1 operators about their specific
requirements.

> There are different views/thoughts on DO in the community. These views need to be
harmonized/consolidated.

> Itis good to assess what everyone is trying to achieve first.

> A set of resources to be orchestrated within a region/country or even a city. VDF views this as a more
generic set of resources.

> Requirements drive architecture work

> External APIs (external to both ONAP as a whole or ONAP components/projects)

A1 THELINUX FOUNDATION '© ONAP ¢

TTTTTTTTTTTTTTTTTTTTTTTTTTT

/
A

Topic #6: ONAP Modularization - Straw Proposal

Action plan: Continue to use the modularization weekly call to drive the evolution of the

strawman proposal. We’re hoping to make the proposal ready for the Architecture F2F in
Montreal later this month (Oct. 29-31).

The owner(s) of each item (identified below) should have their drafts ready for group’s
review on a timely basis!

>

>

>

CI THELINUXFOUNDATION

Modularization working assumptions - (Nigel/Dave)
Define managed objects/Model - follow the CLI project approach (Andy/Manoj/Alex)
Define ONAP functionality into functional components (Manoj/Kevin/Steve)

Define a set of operational work flows across ONAP (eg. use Orange slide deck
presented in Beijing) (Kevin/Ramki/Alex/Margaret)

Identify gaps between ext/int interfaces & models (Andy)

Refactor based on gaps (all+PTLs). ARC F2F in Montreal

Functional decomposition/modularization strawman proposal
(target deadline: Oct. 26th , 2018)

@ ONAP

TTTTTTTTTTTTTTTTTTTTTTTTTTT

Modularity - What do we want to address? (1/5)

General (high-level) Comments

* Instead of using some bullet lists as a guide for the modularity discussions we need to be very specific
about the technical details as to how each software component once modified (upgraded to a new
version) is going to impact the entire system.

* “Modularity” is a way overloaded term today. There are two (perhaps distinctive) views wrt what
modularity means as far as ONAP is concerned:

0 Option A) views ONAP as a common infrastructure using common components such as DB, TOSCA parser,
Data Management System, etc.

0 Option B) views ONAP as a set of independent plug & play functional components. (We may want to
rephrase option B to focus more on integration of legacy components vs “rip & replace” such components.
Integrating an existing component into the platform seems to be a more practical approach that can add
tangible values). Of course, “rip & replace” of a target component could remain as a choice but should be
considered as the last resort (having a much lower priority than other options).

* Given the above two different views we must first agree to use common terminologies to properly
reflect the goals we are trying to achieve. le, are we going to use a common TOSCA parser to achieve
modularity (option A) or alternatively can we accomplish modularity by unplugging an ONAP
component (eg, SO, SDNC, Ag&ALl, ..) and plugging in an orchestrator/SDNC/etc of operator’s liking
(option B)» This is very critical: Whether these two views are mutually exclusive or not is FFS.

Z1 THE LINUX FOUNDATION @S ONAP

Modularity - What do we want to address? (2/5)

Technical Comments

* Need to avoid dupllcated effort to solve the same problem (eg. having multiple
TOSCA parsers in ONAP adds unnecessary complexity).

0 Can’t we redesign the ONAP system having a single (common) parser- If so, what would be
the implications of this change on other ONAP components, the ones that rely on parser’s
functionality»

0 Using a single (common) TOSCA parser would help eliminate any incompatibility issues. This
may have to do more with ONAP commonality than modularity.

0 Rather than analyzing various parser implementation options for a much wider deployment
scenarios we may want to identify the low-hanging fruit (at least as part of our short-term
focus for the next release or so).

 Pending question: What are the key ONAP components (from operators’ point of
view) that need to be modularized? Tentatively agreed to start with SO (led by
Seshu).

 Modularization of other components will happen over time once there is enough
interest from community and proper resources are committed from participating

rojects/PTLs.
C1THELINUX FOUNDATION © ONAP =

TTTTTTTTTTTTTTTTTTTTTTTTTTT

Modularity - What do we want to address? (3/5)

Technical Comments (cont’d)
* Different versions of the same imported component

o

o

An example imported component could be DB but we should standardize many common
components within the framework.

What version (or a range of versions) of a software package we want to use and have a clear
understanding of what impact of an upgraded version is going to have on the entire system.

Eg. if we're going to upgrade the same tosca parser to the next version and there are multiple
components already using it (as a common service). How is this new version going to impact
the functionality of the other components- This has to be coordinated carefully across all
affected components so that we can eliminate any impact on the entire ONAP system.

This is true for the DB as well. OOM is using DBaa$S which will follow a similar logic wrt version
upgrade. Each component uses its own DB where it is well-coordinated with other components
through DBaa$S as a common service.

If tosca parser is upgraded to a new version and impacts multiple components, are we going to
force all these components to be upgraded in one release, multiple releases» How» This is FFS.

* The work on interface versionin? is already in progress in ONAP. The discussion we’re
t

having here on versioning of so

ware components would complement that work.

£1 THELINUX FOUNDATION © ONAP

TTTTTTTTTTTTTTTTTTTTTTTTTTT

Modularity - What do we want to address? (4/5)

Technical Comments (cont’d)
* Enabling differentiators (operator, vendors)

0 This item seems to be more related to the two views (option A vs option B)
mentioned earlier. However, we should focus more on the scope than the

granularity per se.
0 Identifying (over time) the interface that are demarcation lines.
- Maybe internal to projects as well.

* Platform extensibility (innovative idea)

0 We may want to address the platform extensibility by thinking of a new concept -
dealing with two types of functionally-equivalent Microservices implementations
(MS): a model-driven MS vs a custom-built MS.

0 You can design a service via SDC using a well-defined model and the model-driven MS
would do a good job to perform the desired function.

0 Due to the limitations of any model there could be a situation where an operator
encounters a new service type and would want to replace this model-driven MS with a
functionally- el vivalent but custom-built MS which complies with the APIs. How this
option should be supported/implemented in ONAP is for further study.

A THELINUX FOUNDATION L ONAP

Modularity - What do we want to address? (5/5)

 Service creation modelling tool unification:

"~ Are we going to use a single parser (based on TOSCA) or we will need to continue to use
other DM modeling tools like YANG, HEAT (eg, for modeling the NSD template)?

- Common look and feel, design rules, role-based, etc. across all the modules.
- Also ensure that the entire service design lifecycle works (design time / run time).

 Domain driven orchestration/controller that will drive unified data models
per domain to reduce integration costs.
- General domain specific down to vendor specific.
- Still model-driven.,

 Integration ease: Reduce the complexity of the pairwise integration

e Other topics that came up during the discussion:
- Consistency on the external APIs and fragmented exposure

LA

£1 THELINUX FOUNDATION ©ONAP

TTTTTTTTTTTTTTTTTTTTTTTTTTT

TT Recommendations for Dublin Architecture

Tiger Team recommendations for the Montreal F2F meeting (OCT 29-31):
> Focus on actionable recommendations that

0 are achievable in Dublin and
0 enjoy or are likely to enjoy widespread support in the community,

> Add/amend any agreements from the community
> Suggest any features/requirements that should be dropped because

0 they're too vague,
0 they're too ambitious for Dublin, or
0 will create significant pushback.

LA

CI THELINUXFOUNDATION = ONAP

R4+ Architecture Slides

ONAP Target Architecture

(High-Level Functional View)

| ossyess | [uvu | ONAP Portal

ONAP External APIs

—

Active & Available Com-mOn
Inventory Services

Resource Onboarding Data Collection,

Analytics, and Events
Event Correlation

Policy
Service Design Framework

Orchestration

External Registry

Policy Creation & Validation Authorization

Framework

Analytic Application Design Micro Services Bus / Data Movement (see Note 1)

$ Ly 4

Closed Loop Design Framework

)

o0

©

c

m

=

w

c

]

=}

o

]

o

o

a

<

-4
o

Logging

Multi-Cloud SDN Controller —_
Adaptation Configuration & Life
Cycle Management m

Change Management Design Generic NF Controller

Design Test & Certification

Catalog

VNF / PNF Onboarding

Recipe/Eng Rules & Policy Distribution

Environment

1 THELINUX FOUNDATION @ ONAP

DN i e R

Generic NF Controller Architecture

CE-x Controller External API

- Controller Internal API

health
cycle.

ion of the
a common,

Generic NF Controller configures and maintains the
of VNFs/PNFs/services* (L1-7) throughout their life
— The Lifecycle Management Functions are a normalizat

controller aspects of VF-C and APP-C functions into
extensible library

Programmable network application management platfor m

Behavior patterns programmed via models and policie S

Standards based models & protocols for multi-vendor
implementation

Extensible SB adapter set including vendor specific

VNF-Managers

- Operational control, version management, software u pdates, etc.
Manages the health of VNFs/PNFs within its scope

- Policy-based optimization to meet SLAs

- Event-based control loop automation to solve local issues near

real-time
Local source of truth

- Manages inventory within its scope
— All stages/states of lifecycle
- Configuration audits

Key Attributes of Generic NF Controllers

- Intimate with network protocols
— Manages the state of services

Configuration
Design Tool UI**

Closed Loop Actions

Artifact Orchestration Inventory

Distribution OOF (for queries) Policy Updates

i Service Design . Data Collection i i

Run time Ll e S .), Active & Available
catalog J & Creation Analytics & Events Inventory
A

hant el e Sl i [l e S 1
1
""""""" il CTTTTTTTTTUUCEM TTTTTToT

Generic N
Controller

MSB/Data Movement

*Not E2E service view. The “Service” view in the
Generic NF Controller is limited its scope of control

API Handler

NG service Logic Processing
-—>

Operational Tree/Config
Tree (Service Model)

Supports Model-Driven Lifecycle Mgmt. Assigned Resources

* Configure * Stop/start Inventory:
* Audit * Health check Service* Topology
* SW upgrade * L4-7 Service Create

& VNF/PNF State

*Scale in/out

s

Adapters CE-6 not needed***

External
System
ater (s)

- Provide Deployment Flexibility to meet user scalabi lity / resilience ~ '-=-==--="F====-==-== Applications External
needs . VNFs 3 party Controllers
Multi-VIM/Cloud PNFs Specific VNF Managers
*How the services are to be handled is for further study Element Mgt. Systems
** Configuration Design Tool (CDT) to be integrated into SDC) 19
E1 THELINUX FOUNDATION ***CE-6 not needed - see External Controller materials L.A A A A TN PLATE G

Generic NF Controller — External/lnternal Interface
Definitions

CE-x Controller External API

- Interface Definitions
Configuration

Design Tool UI**

CE-1 Distribution of artifacts from Service Design and Creation — artifacts distributed to Run

. . Closed Loop Actions
portifact o.".he’".""‘.’"_ . - 'Z':Z’;t"e'sy Time Catalog, GNFC receives notification and pulls from Run Time Catalog
I ; ; = Note: Configuration Design Tool Ul to be integrated into Service Design & Creation
Orchestration Agzlt\?ti((::(s)lg CEt\I/Z:ics ACt“l’:Vgé rﬁ\(/)z:llable
__ _______ CE-2 Service requests from Orchestration
i MSB/Data Movement) ONAP Optimization Framework (OOF) queries for VNF state and available capacity
[itttk : > Sttt o/ i CEF~~""""""""" oi= Tutai
[. . . .
[a CE-3 Closed Loop action requests from Data Collection, Analytics & Events/Policy
[Generlc N APl Handler
'y
1
: ! Controller o - _ I CE-4 Inventory retrieval from Active & Available Inventory by Service Logic Processing engine
1 . . .
b Operational Tree/Config Inventory updates to Active & Available Inventory by Assigned Resources Inv
: : Tree (Service Model)
: ! cI5 CE-5 Lifecycle management requests to Multi-Cloud (e.g., stop/start VM)
=1
i %i | Config T 1 Service Loglcs:grgo::: :l::dgel-Driven Lifecycle Mgmt. Assigned Resources CE-6
: §. |F « Configure « Stop/start Inventory:
=) | Engineering Rules | - it Heathcheck 4| Service” Topology
- " . upgrade *L4- ervice Create -
: =k oliy Cache/Event Motch | scale out CI7 | & VNF/PNF state Cl-1 APl Handler looks up or retrieves the corresponding Service Logic instance that maps to
BI i Q Q
i g : *Not E2E service view. The “Service” view in the CIG NB service request (serwce/network yang)
I Generic NF Controller is limited it trol
0 ______ Adapters CE-G not needed ™ Cl-2 APl Handler calls Service Control Processing to perform the Service Logic on the target
1 -
[not neede service or network
I
. Multi- External X i i X X
| A%I::tder Netconf Chef Ac‘;’;';%g:"(s) Cl-3 Prior to Cl-2, APl Handler might query the (in-memory) Operational/Config Trees for the
i : N Y network or service details (if already existing)
[4. ~/" i
i | Ne— N _q _________ i : P‘R Cl-4 Service Control Processing retrieves the Service Logic, Config Templates, Engineering
| __ _MsB/DatdMovement__ _ 1 . External rules, and Policies as part of processing the requested action
= App‘l;;,t;tlons 3 party Controllers
Multi-VIM/Cloud PNF: Specific VNF Managers Cl-5 Service Control Processing queries and/or updates Operational/Config Trees as part of

Element Mgt. Systems making changes to the network (VNFs/PNFs)

Cl-6 Service Control Processing requests adapter layer to update/configure VNF/PNF update
using the appropriate adapter for the VNF/PNF

Cl-7 Service Control Processing queries and/or updates local Assigned Resources

LI THELINUX FOUNDATION Store/Inventory as part of making changes to the network (VNFs/PNFs)

— L UPEN N | WUHK AU TUMAIUN FLA TFUHV

GNFC — External Interface Detalls

Interface Definitions Beijing Rel. Casablanca Rel. Protocol
/Service

Distribution of artifacts from Service Design and Creation ~ SDC=»[no GNFC] SDC =» GNFC (trigger) DMaaP
GNFC =>» Run Time Catalog (pull)

CE-2 Service requests from Orchestration SO, Portal =»[no GNFC] SO, Portal =» GNFC REST Generic Request API. See next
Queries from ONAP Optimization Framework (OOF) for ~ OOF =» [no GNFC] OOF queries — not in scope? slide for orchestratiqn
VNF state and available capacity requests for LCM actions.
CE-3 Closed Loop action requests from Data Collection, DCAE =» [no GNFC] DCAE =» GNFC DMaaP
Analytics & Events & Policy Policy — not in scope Policy — not in scope
CE-4 Inventory retrieval from Active & Available Inventory by A&AIl < [no GNFC] A&AIl & GNFC REST

Service Logic Processing engine
Inventory updates to Active & Available Inventory by
Assigned Resources Inventory
CE-5 Configuration requests for cloud infrastructure Multi-Cloud — not in scope GNFC = M-Cloud REST
networking

Lifecycle management requests to Multi-Cloud (e.g.,
stop/start VM)

¢ Controllers are to be Model-Driven — APIs in Dev, Design, Run-Time catalogs

» Payloads: parameter values defined in the platform Data Dictionary (model/meta-data driven)

e CE-6 interface (to external controllers) is not needed and has been deleted. External controller will be interfacing to the whole
ONAP platform — via CE-1 thru CE-4

¢ Beijing Release does not have an implementation of GNFC

¢ For Casablanca it is recommended that VF-C and APPC begin to transition toward GNFC

£1 THELINUX FOUNDATION @S ONAP =

OPENNETWORK AUTOMATION PLATFORM

SDN-Controller Architecture e

Design Tool UI**

« SDN Controller configures and maintains the health of VNFs/PNFs Artfact Orchestration Closed Loop Actions inventory
for cloud networking (underlay/overlay) and WAN tra nsport irbution OOF (for queries) T pdates

services* throughout their lifecycle Run time [gService Design Orchestration [T ——
catalog & Creation

Analytics & Events Inventory
* Programmable network application management platfor m ——— | ___ . __,
. . . ! MSB/Data Mov ment 1
- Behavior patterns programmed via models and policie S I EELEEE - | eEEEELELEELEEEL L o o EEEEEELE €3 --------= —
- Standards based models & protocols for multi-vendor implementation P SDN API Handler
1 1
- Extensible SB adapter set supporting various networ k config protocaols, Lo
including 3 ™ party controllers P Controlle -t
1 1 .
- Operational control, coordinated state changes acro ss devices, source of Repository : Operational Tree/
telemetry/events, etc. . SerF’VrlggeE(s)irr]mtgrd (Sg::/?;;g h;f;el)
. . . [|
» Manages the health of VNFs/PNFs/transport services in its scope | ! \NBSerwce/NetworkYang" dels i
. . . . 1+ S L ! ssign
- Policy-based optimization to meet SLAs : é: ‘ COnrg;:::;:g'c I e e ate ¢
- Event-based control loop automation to solve local issues near real-time | $} ’ Service/Network Design & ‘ SD-WAN Create v
. . 1 § 1 ing Rules TE Tunneling R
- Action executor for outer control loop automation = —— | BGP Config <« Assigned Resources Inventory:
I 7 | SB Device Yang Models | SW Upgrade Service* Topology &
« Local source of truth et - VNE/PNE St
- Manages inventory within its scope 2 ~—
- Al stages/states of Iifecycle : : *Not E2E service view. The “Service” view in the
i i i I 1| SDN Controller is limited its scope of control
- Configuration audits ::
] L] Adapters CE-6 not needea
 Key Attributes of Controllers £ — g
) i I ulti-Clou NetConf
- Intimate with network protocols) E ﬂgg‘ggg'; M
- Manages the state of services | T
- Single service/network domain scope per instance E e T e ; Y
MSB/Data Moyement !
v
i VNFs 3 Party Controllers
*How the services are to be handled is for further study Multi-vIM/Cloud PNFs Element Mgt. Systems
** Configuration Design Tool (CDT) to be integrated into SDC PN

L1 THELIN UX FOUNDAT|ON ***CE-6 not needed - see External Controller materials 22

L" OPENNETWORK ALTOMATION PLATFORM

SDN-Controller — External/internal Interface Definitions [P

Cl-x Controller Internal API

- Interface Definitions
Configuration

Design Tool UI** CE-1 Distribution of artifacts from Service Design and Creation — artifacts distributed to Run Time Catalog, SDNC
Orchestration Closed Loop Actions Inventory receives notification and pulls from Run Time Catalog
Updates Note: Configuration Design Tool Ul to be integrated into Service Design & Creation

——r—
Q0 gr guerie
Orchestration I Data Collection, Active & Available
Analytics & Events Inventory CE-2 Service requests from Orchestration

Distribution

bervice Design
& Creation

Run time

catalog
=r— —::::_ ::::::‘: _::::::::_K/]:S_EZD:B_EB__@P;\‘I; _F;rfeﬁf:__:__:__:c_ —_—_—_— ______ N N Queries from ONAP Opt|m|zat|0n Framework (OOF) for VNF state and available capacity
| SDN CE-3 Closed Loop action requests from Data Collection, Analytics & Events/Policy
] API Handler
i '(Controlle CrL cr2 t cisf CE-4 Inventory retrieval from Active & Available Inventory by Service Control Processing engine
: i Repository - \ Operational Tree/ Inventory updates to Active & Available Inventory by Assigned Resources Inventory
L Service Control _| " configTree o) ,
: 1 Processing Clsl (Service Model) CE-5 Configuration requests for cloud infrastructure networking
:4.-: RESSIHICSINCINRIRNENEMOEES) (/-4 IP/VRF Assign Lifecycle management requests to Multi-Cloud (e.g., stop/start VM)
| 5 : | Serw.ce Logic | L2 Service Create
(=N | Configuration Templates | — L3 VPN Service Create CE6
: 2 : Service/Network Design & SD-WAN Create
: § 1 Engineering Rules | TE Tunneling Assi 4R | "
eHE Policies | BGP Config <> Assigned Resources Inventory:
:gi [sB Device Yang Models)] - SW Upgrade cr7 Service* Topology & Cl-1 API Handler looks up or retrieves the corresponding Service Logic instance that maps to NB service request
e) VNF/PNF State (service/network yang)
(]
*, N - 2 PO : Ck6 a A o o .
@ | "ot E2E service view. The “Service” view in the Cl-2 APl Handler calls Service Control Processing to perform the Service Logic on the target service or network
: 1| SDN Controller is limited its scope of control
1
. Adapters CE-6 not neededy**[*
L]
] - Cl-3 Prior to CI-2, APl Handler might query the (in-memory) Operational/Config Trees for the network or service
o Multi-Cloud NetConf BGP LS/ External . L.
Lo l;igtavl\;?erlr(vanc [orerfiow i pcer” B Agg;%grrn(s) details (if already existing)
1
1 S - —
! i cids —\ ’ I Cl-4 Service Control Processing retrieves the Service Logic, Config Templates, Engineering rules, and Policies as
i " WiS8/Data Mofement v part of processing the requested action
___________ j_______J External . f : : . :
S UNFs 4 party Controllers CI-5 Service Control Processing queries and/or updates Operational/Config Trees as part of making changes to
PNFs Element Mgt. Systems the network (VNFS/PNFS)
Cl-6 Service Control Processing requests adapter layer to update/configure VNF/PNF update using the
appropriate adapter for the VNF/PNF
Cl-7 Service Control Processing updates the local Assigned Resources Store/Inventory once network updates are

CI THELINUXFOUNDATION made successfully

Benefits
* Enable technology swap
* Consistent NB/SB APIs
* Flexible platform extensions

* Improve agility
* Reduce SW footprint
* Reusable framework

SDK-Driven Sub-System — Libraries

(including CCSDK)

CI THELINUXFOUNDATION

f Ld L3 \
SDK Libraries
[e ieisesessssssesssssssssssssmEmsmEEsEEEEEEEEEEESEEEEEEes sk A AR A A A R A A A A A A A A A A A A R B B R B R R AR A A A A A B B R A A A R B B R R B B R B R 1
N B API S D K (API Handler | [API Configurator | (‘Orchestration APIs) (Controller APIs) (Cloud APIs D)

L e # e iususmsEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEsEEEEEEEEEEEEEsEEEEEEEEEsEsEEEEEEEEEsEsEEEEEEEEEEEEEEEE s)
é . . N (.) (- . . N
Orchestration Function SDK Control Function SDK (CCSDK) Multi-Cloud Adaptation SDK

e — Library of Library of
Library of Flows Common Control/NFV Lifecycle Mgt. Functions Common Cloud Translations (shims)
- Service, Resource, Etc. Rebuild_|[Audit || VNF Configure || Assign | Cloud Resource
Network Config. ||Health Check IMI Telemetry l l&]
| Imperative Models I | Declarative Models I Upgrade || Heal ||Svc Function Chain .. I Register I l Heal “ LB | e
BPMN orcI!estration TOSCA orcl)estration 00O 00O e
engine engine [obL] l ONOS l l R%’/)\T:;‘M .. [TOSCA-Cloud
\ y \ y \ Translation/Mapper y
4 A
SB API SDK (Cocioud avts) (G557)
e —— (_Controller APIs) (" pServices APIs) (__Ansible) (_ Azure)
k(Adapte rs) C Resource Orchestration APIs) (_ Collectors) AWS etc.
N ¥ ¥ l—’ J
Orchestrators Controllers pServices 0SSs VNFs PNFs Multi-Cloud openstack Azure AWS
Rackspace IBM Google

*Plugins/Adapters can include:

* 3 party VNFM Drivers
® 3" party SFC Drivers

* Netconf/Yang

* SNMP

e 3 party EMS Drivers
e Ansible/Chef/Puppet
e CLI
* etc.

LA

@ ONAP

OPENNETWORK AUTOMATION PLATFORM

Controller Personas Based on CCSDK Libraries

SDK Libraries

| | (Orchestration AP1s) (_ControllerAPls) (__Cloud APls) [Apicatalog :

CCSDK Libraries R (="

[NB APISDK

SB API SDK ! %) =
(Adapters) T E —ete.
N — e,

N N R
SDN-C Persona Mobility NF Controller Persona || Wireline NF Controller Persona
NB API (neari) 1| (nean)
.
COI‘ItI‘Ol Ier Persona S Control Functions f Configure & LCM Functions A [Configure & LCM Functions)
Library Library Library
Examples (Assign | [Network Config | Rebuild | [Audit | [VNF Configure Rebuild | [Audit | [_VNF Configure
(created from CCSDK) (VN Configure] [Svc Function Chaln] R - s unctlon chain T - s Function chaln
Service Logic .
oDL/ A ... | Other engines
y @gm—]e— >
SB (Netconf/Yang)(piServices APIs)) (Netconf/Yang) (3 PATISEC) CHEAERED
G
| API (055 APEs) OherAdapie® - | pServices APIs) GENNEMENS

I THELINUX FOUNDATION ©ONAP

OPENNETWORK AUTOMATION PLATFORM

