
Common High-Availability
Platform (CHAP) for

ONAP Resiliency
Bharath Balasubramanian*, Michael Howe** and Rick Schlichting*

*+Network Cloud Infrastructure, **Network and Shared Services Development

Goal: A common high-availability platform to
build ONAP components with 5 9s of
availability on 3 9s (or lower) software and
infrastructure in a cost-effective manner.

To achieve this goal ONAP components
need to support multi-site, active-active
services with efficient failover.

Problems

Deploying replicated components across multiple geo-distributed
sites — need to deal with WAN latencies and network partitions.

Active-Active, failover architecture — need to design complex
distributed protocols for failure detection, federation, leader
election.

Diverse replication and resiliency requirements, e.g. some ONAP
components have replicated state, while some don’t. Some need
inputs to be processed by just one replica, others don't care —
cannot have a one-size-fits-all replication/resiliency solution.

E.g. Multi-site state replication
Site/DC in

Beijing

Logically
centralized db

Network partitions
far more common WAN latencies

in the order of 100s of msMSO

SQL
db

Site/DC in
Amsterdam

MSO

SQL
db

Site/DC in
Irvine

MSO

SQL
db

Clustered, transactional DB solutions like Maria-DB may not
satisfy latency and availability needs across geo-distributed sites!

Site/DC in
Beijing

E.g Complex distributed protocols

Site/DC in
Amsterdam

Site/DC in
Irvine

AppC
Cluster

AppC
Cluster

AppC
Cluster

Requests being
handled by the
 AppC cluster

- How can failure of an AppC cluster be detected in a correct manner?
- Where and how should the existing requests be reallocated?
- How can we ensure no split-brain problems in case of
 erroneous failure detection?

E.g. Diverse Replication
Requirements

SDN-C state for most parts can be replicated across sites in
a lazy manner — may not need strong replication
semantics.

AppC requests may be processed by only one cluster —
need strong replication semantics.

Some MSO-Camunda tables seem critical for state
management, while some seem to be just for record
keeping — need mixed replication semantics.

Current Practice
Each team building its own solution — wasteful
and can often be erroneous due to complex
distributed protocols, replete with corner cases.

E.g.selective database mirroring techniques,
failover using pacemaker+corosync, fault-
detection loosely based on timeouts.

Proposed Requirement: CHAP
- Identify common availability and

resiliency problems across ONAP.
- Provide a common high-availability

platform (CHAP) with shared services.
- ONAP components can simply configure

and use CHAP according to their needs.

CHAP Building Blocks
- MUSIC: Multi-site geo-distributed database for

state-management at scale.
- HAL: Configurable recipes for complex

federation and resiliency protocols.
- Conductor: Site-selection service to satisfy

diverse service constraints on resiliency and
availability during initial placement and failover.

MUSIC for multi-site state
management
MUSIC (multi-site coordination) is a
geo-distributed state-management
service, where:

- The Active service reads and
writes to a high performance
local SQL db

- This state can be
synchronously/asynchronously
replicated to the standby.

- When a standby has to take over
on active failure, MUSIC
provides it with the latest state.

HAL for high-availability
recipes
Detecting failure of a service and transferring control to a standby on
another site involves complex distributed system challenges, replete
with corner cases.

HAL provides recipes on top of MUSIC that services can simply
configure to achieve different resiliency patterns: active-standby,
active-active with failover etc.

Conductor for Site-selection

Services often have complex, diverse constraints on how
client requests should be routed to service replicas:
e.g. “Requests must be sent to replicas within 10 ms
latency that are less than 50% utilized”

Conductor provides a configurable constraint solver that
matches requests to sites/replicas based on individual
service policies — used during both initial request
assignment and failover.

Tool/Code complexity
- MUSIC uses two production tested tools Cassandra (to store state) and

Zookeeper (for locks) without any modifications with just around 2000
lines of an additional shim to tie them together — nearly two years of
testing and deployment within ATT.

- HAL uses Zookeeper locks (can be Consul/etcd) for leader-election and
simply uses MUSIC to store heart-beats — less than 1000 lines of code.

- The constraint solver in Conductor is less than 1000 lines of code —
nearly two years of testing and development within ATT.

ONAP-CHAP Design with ATT
TechDev Partners

Common ONAP resiliency
design pattern

The most common resiliency pattern that ONAP components seems to
be targeting:
- three sites, each hosting two ONAP component replicas (OCR for

short)
- Requests are partitioned across the OCRs (active-active system)
- If an OCR fails, then its requests must be taken over by the site-level

OCR
- If the entire site fails then the requests must be distributed across the

remaining OCRs as appropriate
- To ensure efficient failover, OCR state that is maintained in a database

should be replicated across sites

CHAP

Site/DC in
Beijing

Site/DC in
Amsterdam

Site/DC in
Irvine

ONAP CHAP Architecture

ONAP
Component

halD

ONAP
Component

halD

ONAP
Component

halD

ONAP
Component

halD

ONAP
Component

halD

ONAP
Component

halD

Client Requests

CHAP platform providing Conductor (distributed site selection service) that is used by the halDs
and MUSIC (distributed multi-site state management service) that is used by both

the halDs and ONAP components

Request Routing Service
HAProxy/iDNS/DMaaP

Key Elements
* the green elements are part of CHAP

• The ONAP component replicas (OCRs) each of which process client requests. E.g. MSO
replicas, AppC replicas. The ONAP components can write their state to MUSIC/mdbc directly
or through the HAL daemon (as shown in this example).

• A request routing service (RRS) that directs client requests to the appropriate OCR. This does
not do the job of selecting the OCR (which is done by Conductor done below).

• The HAL daemon (halD) is a light-weight stateless representative of CHAP that runs as a
companion to each ONAP component replica (typically in the same failure domain). The HAL
daemon performs distributed failover that includes failure-detection (for crash, partition faults),
replica selection and leader election.

• The Conductor service that takes as input a client request (s) and details regarding an ONAP
component (like current load) and returns a YES if the particular ONAP component can
process that request, based on optimization criteria and constraints that can be configured.

• The MUSIC distributed state persistence/coordination service that is used by Conductor, each
HAL daemon and the ONAP component for state management/inter replica communication
etc.

Failure-free flow
1. All the ONAP component replicas (OCRs) are started along with their companion HAL daemons

across a certain number of distributed sites (typically three).

2. When a new unassigned client request arrives, the RRS simply sends to all OCRs that independently
asks its companion HAL daemon if it should process this request.

3. The HAL daemon queries Conductor with the details of the request and details of its companion OCR
(like load) and Conductor replies with a YES/NO. NOTE: each request need not go through
Conductor and can be aggregated (like topic in AppC) so that all requests corresponding to a certain
aggregation level go to the same OCR.

4. All the HAL daemons for whom Conductor replied with a YES for this particular request will perform
leader/primary election and only one will win. That HAL daemon will return YES to its companion OCR.

5. The OCR that gets a YES from its companion HAL daemon will tell the RRS that it is responsible for that
request and start processing the request.

6. The OCR and its companion HAL daemon periodically check and ensure that each other is alive.

7. Each OCR periodically writes its state to MUSIC. This is replicated across the sites (no. of replicas is
configurable).

Failover flow
1. An OCR and its companion HAL daemon fail (say the VM

or even site on which they are running).

2. The other HAL daemons detect this failure and each of
them perform steps 3-7 of the previous slide. Conductor
can be configured to prioritize site-level failovers before
choosing OCRs from another site.

CHAP

Site/DC in
Beijing

Site/DC in
Amsterdam

Site/DC in
Irvine

Example 1: Stateless, Active-Active AppC
using CHAP

AppC

halD

AppC

halD

AppC

halD

AppC

halD

AppC

halD

Client Requests

DMaaP

AppC

halD

CHAP platform providing Conductor and
and MUSIC that are used by the halDs.

Example 2: Stateful, Active-Active MSO
using CHAP

halD

MSO

db

mdbc

CHAP

Site/DC in
Beijing

Site/DC in
Amsterdam

Site/DC in
Irvine

halD

MSO

db

mdbc

halD

MSO

db

mdbc

halD

MSO

db

mdbc

halD

MSO

db

mdbc

halD

MSO

db

mdbc

CHAP platform providing Conductor that is used by the halDs
and MUSIC that is used by the halDs and by the thin mdbc layer that

transparently intercepts the MSO calls to its local SQL database.

Client Requests

Request Routing Service
HAProxy/iDNS/DMaaP

Points to consider..
- CHAP can be adapted to other design patterns, e.g. 3

replicas in one site, active-passive systems, etc.
- CHAP can also be used for load-shedding and load-

balancing during operation, e.g. use the HAL daemon to
detect and transfer load

- Its MUSIC support different databases for the ONAP
components, e.g. Cassandra, H2, MariaDb etc.

- All the tools involved have been tested and open sourced

Thank you!
CHAP: A common high-availability platform to build ONAP
components with 5 9s of availability on 3 9s (or lower) cloud
infrastructure in a cost-effective manner.

- MUSIC: Multi-site geo-distributed database for state-
management at scale.

- HAL: Configurable recipes for complex federation and
resiliency protocols.

- Conductor: Site-selection service to satisfy diverse service
constraints on resiliency and availability during initial
placement and failover.

