
VIM

12. Notify VNF

Instantiated

DCAE

ETSI MANO ONAP (Green Background)

The ONAP VNF-Level “Assign” only determines the external connection points to the VNF. This

corresponds to step #3 (NFVO processing) in the ETSI documentation. Perhaps in ONAP we

should also create the VNF in the Gen VNF’s Controller’s local inventory (if different than SDN-C)?

1. Instantiate VNF

(VNF type)

3. Assign VNF

4. Create VNF in Local Inventory; Make VNF Network Assignments

10. Configure VNF (VNF)

14. Configure VNF (VNF)

13. Notification of VNF as managed device

I am not aware that AT&T or the ONAP community has yet implemented two separate

levels of configuration of the VNF, once at the Resource and once at the Service level.

However such an interaction may well be needed in cases of more complex Services

so I have added it here to match what I understand to be the ETSI equivalent.

A&AI

8. Instantiate VDU Cloud Resources

9. Result of Request

VNF

2. Create VNF Object

11. Configure VNF (VNF Level; deployment specific parameters)

6. Assign VDU

7. Create VDU in Local Inventory; Make VDU Network Assignments

5. Create VDU Object

For Each VDU in the VNF Initial Configuration

In MANO, the realization of the VNF in the cloud is

always immediately followed by configuration of the

VNF with its “deployment specific parameters”. This is

usually the proper sequence, but no guarantee that

cross-VNF interleaving of these operations may be

needed in some cases. Thus in ONAP these operations

are individually under Orchestrator control.

15. Configure VNF (Service Level, App-Specific Parameters)

In the current SO implementation the VNF-level orchestration is performed

via a sub-flow (building block) “DoCreateVnf”. The VDU-level orchestration

is performed via a sub-flow (building block) “DoCreateVfMod”.

Orchestration

(Service Level Flow)
Orchestration

(Resource Level Flow)
Generic NF

Controller
SDN

Controller

Orchestration

(VDU Level Flow)

MANO provides for NFVO to perform the VIM interactions, but has the VNFM control the timing of the call to VIM. In ONAP the timing of the resource

allocation is left to the Orchestrator. This would allow ONAP to support the common scenario whereby we want to perform all of the “Assign” operations

first for the VNFs in a given Service instance prior to actually realizing that design with any real network resources. This would require splitting the

“DoCreateVnf” and “DoCreateVfMod” into separate “assign” and “post-assignment” activity building blocks, an effort currently underway in AT&T ECOMP.

5. Instantiate VDU
In ONAP, the internal structure of the VNF is abstracted into “VDUs” (VF Modules) that are

orchestrated in generic manner. The Resource (VNF) level flow calls for these generic VDUs

to be instantiated one-by-one. In the ETSI flow the internal VNF structure is not genericized,

and the orchestration of the VNF internals is delegated in whole to a VNF Manager.

VIM
SDN

Controller
Control Loop

ETSI MANO (White Background) ONAP (Green Background)

Generic NF

Controller

1. Scaling Request

(VNF, +1 Units)

4. Request Lock (VNF)

A&AI

2. Validate Request (conflict check)

3. Determine VNF Controller (Assume Gen VNF)

8. Instantiate VDU Cloud Resources

9. Result of Request

6. Assign VDU

7. Create VDU in Local Inventory;

Make VDU Ntw Assignments

5. Create VDU Object

For Each VDU in a “Scale Up” RequestMANO provides for NFVO to perform the VIM

interactions, but has the VNFM control the timing of the

call to VIM. In ONAP the timing of the resource

allocation is left to the Orchestrator. This would allow

ONAP to support the common scenario whereby we

want to perform all of the “Assign” operations first for

the VNFs in a given Service instance prior to actually

realizing that design with any real network resources.

The request for a “Lock” of the VNF Controller can be

thought of as part of a feasibility check for scaling.

The “Assign” request can be thought of as “preparatory

work” that must take place in the VNF Controller.

10a. Request Health Check (VNF)

12a. Request Unlock (VNF)

VNF

11a. Various Health Check Interactions

Alt Flow 1

Alt Flow 2

11b. Scale out notification event

12b. Scale out notification

13b. Various Health Check Interactions

10b. Request Unlock (VNF)

ONAP vendor guidelines specify that scaling a VNF should be a “plug and play”

exercise, and not require any configuration of the VNF to recognize any newly added

VDUs. However, it may be desirable, as part of the end to end scaling process, to

have the Generic NF Controller perform a Health Check. This can be triggered

through an orchestrated flow or through a separate Control Loop flow whereby the

VNF would emit an event upon having detected the new VDU “plug in”.

Orchestration

(Resource Level Flow)

Orchestration

(VDU Level Flow)

5. Instantiate VDU

4

Orchestration Architecture View (Instantiate Example)

Orchestrator
Service-Level

1. Decompose Service into Resources (VNFs into VDUs)

2. Pass Decomposed Resources to OOF to Obtain Homing

3. Create Service Instance Object in A&AI

4. Request Resource Creation (Spawn Resource-Level Sub-Flows in Proper

Sequence) (Future: Separate “Assign” from “Create” Resource-Level calls)

9. Call SDNC/Generic Controller to Apply Service Configuration

Resource-Level (VNF, PNF, Allotted Resource, Network)
5. Create Resource Instance Object in A&AI

6. Assign: Call SDNC to Obtain Resource-Level Network Assignments

7. Create: Instantiate Resource (VNF: Spawn VDU-Level Sub-Flows, Allotted

Resources: Make Request to “Infrastructure Service” Controller; PNF: N/A)

8. Configure: Call SDNC/Generic Controller to Configure Resource Application

Layer

SDNC

• Instantiate (VNF Only: SOL003)

• Scale (VNF Only: SOL003)

• Terminate (VNF Only: SOL003)

SDNC (L0-L3) or Generic Controller (L4+)

• Operate (SOL003)

• Heal (SOL003)

• CreateAllottedResource

• ConfigureInstantiate

• ConfigureScale

• VNF Software Upgrade

Multi-VIM

• Allocate

• Deallocate

Does the SOL003 “Operate” support the

needs for requesting “Start/Stop/Restart

Resource Application”? How about

“Lock/Unlock Resource from Control Loop

Activities”? Does the SOL003 “Heal” support

the needs for “Resource Health Check”?

• Instantiate Service (Service Request)

VDU-Level (VNF Only)

7A. Create VDU Instance Object in A&AI

7B. Call SDNC to Obtain VDU-Level Network Assignments

7C. Allocate Cloud Resources (via Multi-VIM)

• Add VDU • Delete VDU

ETSI NFVO functionality

In ONAP, the internal structure of

VNFs are abstracted into VDUs

(VF Modules) that can be

orchestrated in a generic manner.

In the ETSI flow the internal VNF

structure is not genericized, and

the orchestration of the VNF

internals (VDUs) is delegated in

whole to a VNF Manager. If we

were to move the VNF->VDU

decomposition as well as the

“Spawn VDU-level sub-flows”

down to this level, the result

would roughly correspond to the

ETSI VNFM functionality. Such a

move would be possible only if all

VDUs for a given VNF are by

necessity homed to the same

cloud instance.

ETSI doesn’t consider

Allotted Resources to be

within the scope of NFVO

ETSI doesn’t consider application level

configuration to be in scope for NFVO.

• Assign

• ChangeExtConn? (SOL003)

Invocation of Remote Sub-Flows (Service-Resource Example)

VF-C

SO Instance 1

Service Orch

Function

Resource Orch

Function
BBx

Model Driven Routing Function

X

Remote

Proxies
BBx-p1 BBx-p2

Resource Orch

Function
BBx

SO Instance 2 (Optional)

X X X

X

This subflow BBx implementation can execute either

locally or remotely, though remote execution

requires a local proxy to make the remote call.

Resource Orch

Function
Fx

The service level flow calls the

functional API “X” irrespective

of Deployment Variation “A”,

“B”, or “C”. The Model drives a

“routing function” which calls

the specific implementation to

be used per Resource.

The equivalent functionality of BBx could

alternately be implemented via a VF-C. This

implementation requires a local proxy to

make the remote call, and perhaps to map

the interface, if the application interface of

Fx differs from BBx.

Deployment

Variation “A”

Deployment

Variation “B”
Deployment

Variation “C”

Proxy encapsulates the application

level interface in a remote API call.

