
ONAP Microservices - Approaches

Manoj Nair

NetCracker

Reference : Modular ONAP Implementation and Integration to
External DMS (Alex and Ramesh)

This presentation’s focus
• Improvements to Model Driven Approach proposed in Alex’s presentation, with reference to some best

practices
• How Modularity can be achieved (Reference to Alex’s proposal earlier) : Best Practices from TMF
• : Approaches and Views
• Cloud Native Micro Services
References : https://wiki.onap.org/display/DW/Microservices+Industry+Perspectives

https://wiki.onap.org/display/DW/Microservices+Industry+Perspectives

What is proposed here ?

• Three approaches to refine Microservice Architecture

• Microservice Architecture : Deals with how microservices are defined, realized
and how they interact.

• Approach 1: Model Driven Microservice – Approach based on DDD
- Other Open source implementations – ODL, OSM etc, Model driven Microservices by Alex,

Reference to OSM implementation.

• Approach 2: Modular Microservices - Leverage TMForum IG1118 Management
and Control Continuum and Future Mode of Operation concepts
- Based on proposal by Alex and Ramesh on DMS, but enhancing it further with reference to a

standard architecture.

- Primarily focused on structuring microservices and components in a hierarchical “Lego blocks”
like units which can be mixed and matched to create management and control functions.

• Approach 3: Cloud Native Micro Service Design (Followed by MSB)
- Based on the Service Mesh technique used in the cloud native world.

- Mainly an implementation approach than a consistent microservice design methodology.

Above approaches are complementary to each other and not exclusive

Approach 1: Model Driven Microservices

Reference : Model Driven Micro Services (Alex)

Domain Driven Design Concept

• Top down approach of designing Microservices

• Domain-driven design (DDD) advocates modeling based on the domain of business

• In the ONAP context Domain may be - Hybrid Telecom Service Orchestration and Management

• In the context of building applications, DDD talks about problems as domains

• It describes independent problem areas as Bounded Contexts (each Bounded Context correlates
to a microservice)

• Bounded contexts own its own domain data, logic and behavior

• In DDD to define the domain model for each Bounded Context,

- identify and define the entities (and other patterns if required)

- create a boundary around things that need cohesion

- build and refine domain model contained within the boundary that defines the context

- Each bounded context can be modelled as a microservice

Domain Entity Pattern

• Entities represent domain objects and are primarily defined by their identity and
not only by the attributes that comprise them

• An entity’s identity can cross multiple microservices or Bounded Contexts.
- For example Policy in one microservice might be TCA Configuration in another microservice or

Constraint in yet another microservice

• The same entity can be modeled across multiple Bounded Contexts or
microservices as different identities.

• However, that does not imply that the same entity, with the same attributes and
logic would be implemented in multiple Bounded Contexts.

• Instead, entities in each Bounded Context limit their attributes and behaviors to
those required in that Bounded Context’s domain.

Reference : link

https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/microservice-ddd-cqrs-patterns/microservice-domain-model

An example

Configuration
Policy

PAP

PDP/PEP

Operational
Policy

OOF

Constraint

DCAE

Closed loop
policy

All refers to same entity with
different identities , different
attributes and behavior

Configuration
Policy

Bounded Contexts

Each bounded context owns the
management of identities

Views on ONAP Current Microservice Architecture

• ONAP’s current MS architecture is defined per component. So the domain as per DDD
has to be looked at a per component level
- ONAP seem to limit domain scope to each component OR sometimes seem to refer to use cases in the context

of domains.

- Microservices are bound to components than end to end business context (not loosely defined based on
domain entities but bound within each component) or use cases.

- To realize business use case it has to be disintegrated at component level and then MS level.

- Multiple components and associated micro services need to be augmented to support end to end capability.

- In ONAP each component bounds the entities, domain data and associated identities. This creates a
dependency and violates the independent development practices put forth by DDD through bounded context.

- Kubernetes seems to map microservice to Service and not Pods, but currently each component in ONAP is
mapped to Kubernetes Service with associated Pods representing docker containers fulfilling the micro
functionality. Reference : link , link

https://kubernetes.io/docs/concepts/services-networking/service/
https://wiki.onap.org/display/DW/OOM+User+Guide

How DDD enables Model Driven Design

• Encouraged to create domain entities and bounded contexts (Quite
similar to what modelling team is doing with CIM, but might require
further identification of bounded contexts)

• Each bounded context has own domain model and ubiquitous
language relevant in own boundary

• A context map is formed representing interaction between bounded
contexts

• Microservice boundaries are defined based on bounded context

An Abstract View of Realizing DDD

ONAP
Microservice

ONAP Micro
Service

ONAP
Microservice

ONAP Microservice ONAP Microservice ONAP Microservice

Catalog Inventory

Distributed Data Store

Workflow

D
M
a
a
P

M
S
B

ONAP
Microservice

Policy

Pub/Sub

Action invocation/API End Point Registration

Pub/Sub

API Endpoint Registration
Bounded
context

ONAP
Microservice

Common Information
model

Constraint Configuration
Policy

Closed Loop
Policy

Based on
Domain
Model

Specialization
with alternate
identities for
entities –
example for
policy

Example – Model driven approach by OSM

• Models are centrally managed
• Yang models are compiled to

generate base classes used by
all the components.

• IM-NBI uses pyang tool set to
generate python code, json
schema and json message
templates to be used by
modules in OSM

• Centralized management of
data models helps in having a
unified view across OSM and
extensions are managed
centrally

Example – Model driven and Event Driven MS in ODL

Network Elements

Applications

Abstraction Layer

SB Protocol PCEPOF x.y

Network Model
REST /NETCONF

Libs Libs

Network

Topology

LinksNodesPaths

NE…NENE

System Flows RIB

Table …Table Table

…
Flow Flow Flow

Config Stats

Tunnels…

NE

BGP-LS
Libs

OF-Config
LibsLibs

REST APIAPIAPI ALTO

Verifier Plugin

Notifier Plugin

Plugin

…

OpenDaylight MD-SAL –
Framework stores Config and
Operational data and enables
interaction between MS.

Micro services register with
MD-SAL platform – about
capabilities, interfaces, entities
etc. Each MS is modelled
using YANG and compiled to
create skeleton code

MD-SAL takes care of data storage ,
cluster data consistency, sharding,
interaction between micro services,
set of tools for project skeleton .
Any change in distributed
config/operational tree is notified to
subscribed MS Reference: Opendaylight MD-SAL Architecture

Model Driven Microservices – One possible implementation
view

ONAP
Microservice

ONAP
Microservice

Music

API API

DMAAP/Real Time Data Event Streaming & Processing

MSB

OOM

Meta Model
Or MS
Configuration

Meta Model

Distributed Configuration Store (OOM –Consul ?)

M
S

D
ep

lo
ym

en
t

U
n

it

M
S

D
e

p
lo

ym
e

n
t

U
n

it

Generated API
(Swagger)

Generated API

ESR/

Ext GW

External Domain
Orchestrator/Controller

Geo-Distributed ONAP

API Routing

API Invocation (Actions)

ONAP Primary Instance

Configuration
read/sync

Subscription for Data
Change, Notification,
Configuration and
Operational State update

State update
resulting in

event

MS Configuration
push to Distributed

store

Registration for topic + State change
notified to subscribed MS

M
S

R
e

g
is

tr
a

ti
o

n

External
System

Registration

3

1

2

4

5

67

8

3 3

Key Concepts 1/2

• Microservice deployment unit consisting of the core MS software along with metafile which
contains configuration and deployment descriptor (Can be modelled using SDC ?)

• MUSIC for distributed , highly available storage for domain entities

• Distributed Configuration Store for maintaining runtime configuration data of MS

• Microservice Bus which act like a MS Endpoint Registry and API call routing GW

• DMaaP or Real time data event streaming bus (based on RESP) which routes messages and file
transfers across distributed MSs

• OOM which reads the Metafile of MS and carries out deployment, registration.

Key Concepts 2/2

1. Micro services are packaged as deployment units – Packaging here is just logical in nature. Physically this can be an ONAP micro service

component with a well-known (XML. YAML etc) configuration, deployment descriptors which acts like a metadata for MS. In practical sense the

Metadata may be split to two files – deployment descriptor and configuration descriptor. Deployment descriptor is used as input for deployment by

Kubernetes or Docker Engine. Configuration Descriptor captures following details

- MS configuration like DB connectivity details

- MSB registration including the capabilities

- DMaaP registration including the topics published and subscribed

- CHAP related configuration

- Domain data bound by MS

- Swagger for generating APIs for MS (which can be consumed by MSB)

2. During the microservice deployment (using deployment descriptor), metadata is read from the microservice predefined directory structure and

pushed to the configuration data store. Rest of the configuration changes can be applied on the configuration store

3. OOM deploys MS and carries out registration of MS on MSB based on the registration data read from configuration store . Similar registration
mechanism can be carried out for DMaaP as well.

4. MS carries out self-configuration or OOM initiates configuration of MS by reading the configuration data store

5. During the lifecycle of the MS the state is updated on the CHAP distributed DB which triggers notification on DMaaP

6. Notification forwarded to consumer by DMaaP

7. Consumer act upon state change : This is optional – indicating the event driven microservice behavior

8. Consumer potentially invokes action on Provider through an API call. : This is optional – indicating the event driven microservice behavior

Approach 1: Observations

• The concepts described in this approach focus on the boundary, structure and
interaction patterns of microservices

• Microservices can be model driven following the domain driven design principle
with bounded context mapped to a microservice. Each bounded context
maintaining own domain model.

• The reusability of the microservices and aggregation of microservices to form a
system or a solution with a well defined grouping pattern is not covered well.

• Require effort in refactoring the existing microservices to define context map,
domain models etc.

• Will enforce top down modelling of microservices with alignment to domain rather
than independent projects or components.

Approach 2: Modular Microservices Design

TMForum IG1118 : FMO Component (Concept)

• Consumer Interface: Interface used by component to fulfil
needs for tasks to be carried out related to its purpose. The
tasks will include the evaluation of information and the
providing of results.

• Provider Interface: Interface through which a component
offers a capability to carry out specific tasks related to its
purpose.

• Application Function: Exposed through Application API and
provides access to all the related to the primary business
purpose of the component

• Operations Function: Exposed through operations API and
implements the support for managing the lifecycle process
for the component

• Security Function: Exposed through security API and and
provides security features for the component

• Environment Function: Accessed through the execution
environment APIs and used by the component to access the
infrastructure resources that it needs to support its
functionality or operations.

Reference: TMForum IG1118

Management and Control Continuum

• A part of FMO Concept which focus on operational aspects of services in the
target architecture built on NFV and SDN.

• Deals with component that have management-control functions as their primary
functions.

• In traditional systems functions like EMS/NMS, Control Plane etc are considered
as MCC functions.

• In the MCC architecture MCC components can be assembled to form MCC
Systems. An assembly of MCC components can be given a certain
name/branding.

• A collection of functional components can be packaged together and
delivered as a solution to a particular problem.

• Such an assembly in itself can be considered as a component.

• Each component in an assembly is contributing its application function to the
capabilities of the overall branded component

• The same MCC component can be offered as part of different branded
components.

Reference: TMForum IG1118

FMO Architecture: Composition of Components

Assembly of component perceived
as a component by end user

Reference: TMForum IG1118

FMO Component : Positioning of a Component in a hierarchy
of modular constructs

Reference: TMForum IG1118

• A component-system pattern is fractal, split a component and
you get more components, combine components and you get
a component.

• MicroServices can be perceived as a component fulfilling a
cohesive function.

• A Branded Element constitutes of multiple features which in
turn are realized through set of functions – all levels can be a
composite component.

FMO Component : Key characteristics

• FMO component is a good way of visualizing the Microservices with well
defined boundaries expressed through – Operations, Application, Security
and Environment Functions

• FMO Component supports a provider consumer pattern and interfaces for offering
or consuming capabilities that can be expressed through APIs.

• FMO Component may have multiple contexts – information context (e.g: software,
image, descriptors), delivery context (packaging, modules), deployment context
(deployable unit – as an assembly of functional components in a deployment unit),
catalogue context (represented in a catalogue as a functional component along
with delivery and deployment context), runtime context (component artifacts
turned into runtime entities consuming resources and exposing APIs)

• For ONAP, MCC Component can be interpreted as the basic unit of
functionality that can be represented in a microservice and can be
assembled to form a system or a branded component (for example DCAE).

Reference: TMForum IG1118

Relevance in ONAP – Assembly of Branded FMO/MCC
Component

ONAP Branded
Component (e.g. SO)

ONAP Branded
Component (e.g.

External API)

ONAP Branded
Component (e.g

A&AI)

ONAP Branded
Component (SDNC)

ONAP Branded
Component (e.g. OOM,

MSB, AAF)

ONAP Solution as an
assembly of Branded
Components

ONAP as an assembly of Solution subsets

ONAP as Domain Orchestrator
Branded Component

ONAP as Domain
Orchestrator Branded
Component

ONAP with OSS/BSS MCC Components
(E2E Service Orchestration)

Layer 1

Layer n

One layer’s capability is infrastructure
to the next layer

ONAP Branded
Component

ONAP Modularity and Standard Alignment through Proxy
Component

Branded ONAP Component

Branded ONAP
Component capabilities
exposed though another
component

• A branded ONAP component (such as SO or DCAE)
can be represented through the interfaces
consolidated/exposed by a single component which
acts like a proxy.

• This proxy can be realized using ONAP MSB or can be
dedicated microservice within ONAP Branded
Component (e.g. side car exposing the component to
the service mesh)

• This approach can be used to enable standard
alignment. For example if two SDO interfaces need
to be supported based on different deployment
models, two proxy components can be created with
different component interfaces.

• Modularity is ensured by the FMO component
structure and the APIs exposed by micro/macro
levels of components which are consolidated
through proxy component

Multiple instances of this
proxy component possible
to align the branded
component to multiple API
flavors required for
Standard alignment

Suggested changes in ONAP

• Refactoring of APIs across components/Microservices in the Security, Operation, Application and
Environment categories (Anatoly from NOKIA: This is not as easy as we think, also there may be some ambiguity which need to be

cleared – Operation API for one MS may be Application for another, there is no clear guideline for classifying the API to different

categories)

• Have basic minimum set of entities to be supported in microservices to enable manageability and control.

• A means for the components/Microservices to express capabilities in a catalogue to enable appropriate
assembly (MSB capability limited to end point registration, not capability registration)

• Governance of interaction between components through policy (Already available through Configuration
Policy ? – Policy Driven Orchestration ?)

• To have capabilities built in to components/microservices to achieve lifecycle compatibility (API/Interfaces
change and upgrade support) with relevant mediation functions or adaptors

• A mechanism to express different context of Components/Microservices – Delivery context, Deployment
Context, Information Context, Catalogue context, Runtime Context etc.

Modularity : How Microservice Composition can be
Represented? Learnings from TMForum TAM

• Define Microservice Levels
(Level 1, Level 2 etc) that
compose domain functions

• Define well defined APIs for each
level of Microservice- roughly
based on IG1118 categorization.

• What problem this solves :
• Reduce ambiguity in

defining microservice
boundary, ensure
consistent view for MS.

• Well defined APIs at each
level makes it modular and
ensures core properties of
MS – Easily replaceable,
Can be independently
developed and upgraded

Approach 3: Cloud Native Micro Services

Cloud native microservices

• Microservices designed with cloud native principles in mind

• 12 factor principles – link (need not be cloud native, but general MS principles)

• CNCF currently is tool focused that work with COEs and dockerized containers. Heavy Kubernetes

focused

• ONAP already uses some of these tools sets (Kubernetes in OOM, Tracing tools in Logging)

• What is missing ? A framework which integrates all these toolsets that can be readily used for

implementing microservices (i.e consistently across microservices)

• CNCF so far has not given MS design guidelines , structure or modelling for MS other than what COE

provides.

• Interfaces like gRPC/GPB seem to be quite efficient compared to REST APIs. Is there any need to

migrate from REST API to gRPC?

https://12factor.net/

How Cloud Native is ONAP ?

• Not all Micro services in ONAP are designed with an objective to be cloud-native. Some important
characteristics that should be considered are
- Leverage the cloud characteristics like scaling, healing and migration (handling lifecycle management operations) (Some components

support this – e.g. DCAE)
- Version and Update/Upgrade handling without impacting the functionality (?)
- Portable across cloud infrastructure (No dependency on Cloud Infrastructure – Intel vs AMD, AWS vs OS vs GC vs Azure vs VMWare

vs COE)
- Inbuilt state management , consistency checking mechanisms (Project specific, How each project mitigates CAP- Consistency,

Availability, Partition Tolerance)
- Inbuilt health check mechanisms (Supported by OOM ?)
- In built fault tolerance mechanisms (Supported by OOM ?)
- Fault isolation capability (OOM/MSB?)
- Secure interactions – internal /external (aaf?)
- Tracing of flows across microservices (Planned to be supported by Logging?)

• Not all microservices endpoints plugged into MSB

• Each project use own model of state management and consistency mechanism across distributed instances of MS

• Scaling/Healing and Migration of MS are not consistent and in the early stages.

• No consistent deployment mechanism - Mix of blueprint, heat templates, helm charts, dockerfiles for microservice
onboarding

• No consistent configuration formats – Consul , YAML templates, Helm, XML, JSON, HOT

• Version Portability (Amsterdam to Beijing) ? Lossless Software Update ?

CNCF Toolsets that can be leveraged in ONAP – Reference
CNCF, IETF

gNMI/gRPC/ProtoBuf as enhancement for
VES Collector

gNMI/gRPC, QUIC for NE/VNF
Management

Rook for Cloud
native distributed
storage , which can
be leveraged in
MUSIC

Fluentd, Jaeger,
OpenTracing

Prometheus for MS/VNF telemetry
collection , monitoring

Notary, SPIFFE, SPIRE

TUF for Secure SW
update

Service Mesh: Istio, Linkerd,
Envoy

Open Policy Agent

CNCF Projects Maturity Levels (Subjective Assessment) 1/2

Project Relevant application
in ONAP

Maturity level Backing companies Recommended ?

Kubernetes (COE) OOM, DCAE High Google + Many others Yes . But troubleshooting, monitoring, deployment seem to be complex.

Prometheus (Monitoring) DCAE, OOM Medium Robust Perceptions,
Container Solutions ,
Independent Contractors

Can be used for container monitoring at least for time being. Roadmap is not
clear.

Fluentd (Log data collector) ,
Jaeger (Distributed trace
analysis), OpenTracing
(Distributed trace collector)

Logging Medium
(currently at 1.0
Release)

Jaeger from Uber,
Opentracing – Lightstep.
Github contributors –
Fluentd(135), Jaeger(45)

Distributed tracing using Jaeger or OpenTracing might be useful for ONAP.
(Requires instrumentation in code)

Envoy (edge proxy, Service
Mesh Data plane)

MSB , ONAP Projects,
OOM , AAF

High Strong contributor base
(161), Originally built by Lyft

MS proxy might be relevant while adapting service mesh. But need to debate if
service mesh is good enough for ONAP. Istio Service Mesh CP works well with
envoy.

Linkerd (Edge proxy, Service
Mesh Data Plane)

MSB, ONAP Projects,
OOM , AAF

High Healthy contribution base
(70), Buoyant

As per this comparison Linkerd seems to be feature rich , but consumes more
CPU and memory compared to Envoy. Supports HTTP/1.1, Thrift, ThriftMux,
HTTP/2 (experimental) and gRPC (experimental). MSB team to comment
suitability of Linkerd.

Istio – Service Mesh Control
plane

MSB, OOM ? High Google, IBM, Lyft. Preferred if there is a plan to adapt Service Mesh in ONAP. How this will be
integrated ? As a separate project ? As part of MSB/OOM ?

https://kubernetes.io/partners/
https://www.envoyproxy.io/docs/envoy/latest/intro/comparison

CNCF Projects Maturity Levels (Subjective Assessment) 2/2

Project Relevant application in ONAP Maturity level Backing companies Recommended ?

Notary (secure content
sharing) , TUF (secure
software update spec)

AAF (Not sure), VNF SDK, OOM
(software update – to be
confirmed), SDC Package manager
(to be confirmed)

Low (Not yet in a
major release)

Healthy contributor
base (60+)

AAF team or Security subcommittee to comment . Might be
relevant for software upgrade, image upload, Marketplace, VNF
SDK (all external facing)

Vitess (Clustering of MySQL,
Sharding)

Many projects – that use MySQL
or MariaDB

Medium Healthy contributor
base (100+)

Project teams to comment. May be relevant for distributed
deployment of ONAP components, Scalability enhancements etc.

Rook (Cloud native distributed
persistent store)

Music, Other projects that require
distributed persistent store

Low (Not yet in
major Release)

No known companies .
Good contributor base
(70)

Not recommended. Low maturity and no known deployment.

SPIFFE (Spec)/SPIRE
(Implementation) –Service
Identity Mgmnt

MSB,AAF (Service Identity
Management)

Low Scytale , Istio No. Similar capabilities in MSB and AAF. But low maturity level.
Istio-Auth seems to incorporate this. AAF and MSB to comment.

Open Policy Agent Policy, MSB Low No known companies No. This is primarily meant for controlling the MS behavior
through policy with a daemon deployed along side the service.
Not recommended immediately due to maturity issues. Based on
maturity can be considered to position this as a PDP per
component (Policy team to confirm)

NATS (NAT Server) -
Messaging, Publish/Subscribe,
Request Reply, Queuing

MSB Medium Healthy contributor
base – used by
Ericsson, HTC, Siemens,
VMWare

Require evaluation. Similar capabilities like MSB. Supports
different types of communication models. Uses a proprietary
messaging format (gnatd) which is claimed to be efficient. May be
useful if we want to unify communication models under single
project (but will require lot of refactoring)

Core DNS (DNS functionality,
Service discovery)

MSB , DNS VM Medium Healthy contributor
base (80+). Used by
Sound Cloud, MIT

Require evaluation. Already part of K8S v 1.9 onwards. Need to
see if the scope is limited to K8S cluster and containers.

gRPC/gNMI/gNOI Views

Characteristic gNOI gNMI gRPC

What is the focus gRPC based Operational interfaces to
network devices

gRPC based protocol for modification and
retrieval of configuration from target
device

Generic RPC mechainsm

What is available ? Microservices which can be reused for
enabling the interface

Client library implementing network
management interface

Many implementations in different
languages

Who is driving ? Open Config Open Config Driven by CNCF

Contributors ? Limited Limited Many

Where is it relevant in
ONAP

SDNC, App-C, VF-C, DCAE (all SBI) SDNC, DCAE, App-C, VF-C (all SBI) Between MS , ONAP and external
systems

Dependency gRPC, protobuf gRPC, protobuf gRPC Stub/Service implementation ,
protobuf. HTTP/2

Why it is relevant ? gRPC based, efficient communication, ready
to use operational protobuf specs

gRPC based, efficient communication,
ready to use operational protobuf specs

Bidirectional, Asynchronous, Can be
used for notifications or RPCs, low
latency, can support many
communication patterns , Can also
support REST HTTP1.1 (proxy) . Very
low dev overhead.

Recommended for ONAP
?

Need to check how many VNF vendors
support this. May not be immediately. SDOs
do not seem to endorse this yet

Need to check how many VNF vendors
support this. May not be immediately.
SDOs do not seem to endorse this. yet

May be some wrapper rather than
exposing gRPC directly to MS ?
(Service Mesh ?)

All options above may require Kubernetes

gRPC vs REST

Characteristic gRPC REST

Performance Impressive Relatively slow

Development overhead Low (Stubs can be auto
generated)

High

Limitation Version management,
Compatibility, Requirement for
retooling , Stub/Service
Management

Processing overhead

Compelling capabilities Low development overhead,
performance, communication
patterns

Wide adoption, tool sets,
Developer familiarity

Where it best fits Internal ONAP MS
communication

ONAP External communication

OMSA (By MSB team)

OMSA Observations

• OMSA is primarily an implementation approach than dealing directly
with the Microservices design principles –Modularity, Model Driven,
Independent development, consistency concerns.

• Limited Scope – i.e covering the Micro Service discovery, Interaction .
How about nature and boundary of microservices ?

• Summary :
- Good for short term benefits

- Scope of MS should cover more than just inter-MS interaction and discovery

Summary of views

• All approaches bring-in significant practical value

• Among the three approaches , Approach 2 seems to be more favorable
considering the ease of adoption and the modularity that can be achieved
- Approach 2 might be favorable from a component level standard API and model alignment

point of view as flexible proxy components can be supported

- Approach 2 can also leverage some of the concept of bounded context pattern described in
approach 1

- Approach 1 might require a major revamp across projects - the way Model states are
maintained, propagated and acted upon. So this approach may be considered for long term.

• Approach 3 is more of an implementation approach with focus on discovery and
interaction of MS. MS still need to be structured well, consistent and follow cloud
native principles to leverage benefit of this approach.

• Approach 3 seem to give some immediate benefits and may be considered for
short term, while other two approaches may be considered for future releases.

Recommendations for Casablanca

• Right mapping of Micro Service – Pod ? Service? Docker ? API Endpoint ?
Component ? Project ? (or TMF IG1118 based Component System pattern)

• Model Driven Micro Service : (Can be for long term- based on community view)
- Central model repository referenced by all components

- Common library of model base classes used by components

- Anything Else ?

• Modularity of Microservice (Can be for long term- based on community view)
- API Refactoring – Consistency in representation of APIs across MS and components

- Policy tailoring all interaction between microservices/components.

• Communication between Microservice
- Service Mesh or gRPC or RESP or DMaaP or REST ?

• Testability of ONAP components based on Cloud Native Principles (enhance S3P)

• Define guidelines for creating cloud native microservices

• Microservices Meta Modelling through SDC ? (to ensure consistency)

Recommendations for Future Releases

• Best practices incorporated from Approach 1 and/or Approach 2

• How Microservices Architecture support following
- Different deployment models – Brown field, Green field

- Different Integration models – point to point , geo distributed

- Different testing models – unit testing, integration testing, CI/CD

• How following requirements are supported
- In service software update

- ONAP release upgrade

- Model/Policy/Workflow tuning

- Troubleshooting – Remote, Local, ONAP specific OAM KPIs

