
ONAP Modularization



Goal: Evolve ONAP to a more modular, agile architecture: 
 Breaking ONAP into smaller reusable components 
 Enabling technology swap-out 
 Reducing software footprint
 Allowing integration of non-ONAP components  

Agenda

• Key ONAP challenges and critical gaps
- Issues identified by the broader ONAP user community

• Architecture principles and approaches
- Guide how to address the challenges

• Articulate succinct definitions and applicability of microservices, cloud-native, service mesh

• Refactor ONAP by leveraging common services to the fullest extent possible

• Approach: Focus on one major ONAP component at a time
- Refactor/re-architect component to address specific challenges

• Example: ONAP controller:  …. Coming soon
- Challenges, suggested steps, and phased realization plan

Goal and Agenda



Problem Statement

• There is a general perception that ONAP is too complex, too big and hard to 
make changes.

• Modules are monolithic (SDN-C, SO) and large, not sharing common utilities

• Service providers might have a specific module already implement and 
would like to integrate that module into ONAP (e.g. leveraging an external 
controller or orchestrator for some existing deployed technology)

• Service providers would like to deploy ONAP incrementally, whereas today 
ONAP supports all-or-nothing approach

• Not all ONAP modules take full advantage of cloud-native microservices

Can incorporate additional issues and/or more details if available
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Approach: One component at a time

Approach
1. Focus on solving component-specific problems

2. Adhere to principle of Refactoring

3. Validate new technologies on selected areas before broad use

4. Progressively build a platform of reusable technologies

- Establish project to collect Common Services over time

5. Focused partnership with selected PTLs to validate and refine our approach

6. Learnings from initial implementation will benefit subsequent module conversions

7. Maintain backwards compatibility 

Avoids

1. Massive undertaking of decomposing all of ONAP into functional elements in one go

2. Unnecessary disruption to ONAP User Community and Planned Release Delivery

Evolutionary To Maintain Backwards Compatibility (Rather Than Greenfield Approach)



Areas of commonality
1. Resiliency and Traffic Control

• Load balancing
• Timeouts, Deadlines, Retry Budgets, Rate Limiting, Circuit 

Breaking
• Recognizing and utilize idempotent behavior
• Canary deployments, A/B tests

2. Security
• Encryption decoupled from applications
• Key rotation and certificate management (w Kubernetes)

3. Observability
• Logging, auditing 
• Metrics
• Distributed Tracing

4. Data Persistence
• DBaaS
• Configuration

Toolings and Technologies

1. Microservices

2. Cloud-Native
- Docker 

- Kubernetes

3. Service Meshes

Contribute to General OSS efforts

• Large-scale networking support for Docker 
and Kubernetes
- Who is better positioned than us to do this?

Create and Deploy Platform ‘Plumbing’



ONAP Architecture – Emphasis on Shared Platform Capabilities
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Proposed ONAP Architecture Updates
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ONAP Architecture – Emphasis on Shared Platform Capabilities
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In Summary

Breaking ONAP into smaller reusable components
• Decompose ONAP on a component-by-component basis
• Tie directly to addressing current problems
• Validation of approach 

Enabling technology swap-out 
• Define abstract interfaces between components
• Provide ability to change implementation over time
• Support partial use of ONAP component

Reducing software footprint
• Extract common services into a reusable platform
• Leverage technologies to support evolution (microservices, cloud-native, service mesh)

Allowing integration of non-ONAP components
• Support partial use of ONAP component
• Documented interfaces define integration points

Goal: Evolve ONAP to a more modular, agile architecture



Example Component Modularization



Controllers: Current Issues and Challenges

• Lack of clarity & roles in the controllers (which controller does what?)

• Divergence of controller implementation

• Duplicate and uncoordinated interfaces
- Lack of full Configuration & Lifecycle Management by one controller

- Lack of uniform common services in southbound interfaces

• Tightly coupled to Open Daylight (ODL) could affect modularity and 
technology refresh

• Controller scalability (functional and non-functional)
- Functional: Instance(s) for each separate functionality?

- Non-functional: Scalability due to transaction volume and load

• Identify and migrate to common modular services used by multiple 
components 
- Examples: IP Address Assignment, TOSCA Parser, YANG Parser, Ansible server

• Model-driven architecture not fully implemented



PMO

Controller: Targeted Improvements
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• Extend and expand use of shared platform: AAF, Logging, DMaaP, …
• Common logging, audits and tracing: Platform-wide analytics
• Scaling and Resiliency through platform features (e.g. Kubernetes)
• DBaaS: Use common DB instead of today’s component DB
• Runtime catalog: Avoid caching copy as today
• Decouple from ODL where needed
• *Evolve to autonomous microservices

• Some shared across controller personas
• Some as common services, consumed by any component (e.g., ansible)
• Scalable independently

FMO

M-services* Ansible Server*



Functionality
• Clarified roles and responsibilities
- Necessary pre-req for modularization

• Consistency of common functionality 
- Implemented via shared modules & components

• Standardize and abstract common interfaces
- Modularization supports loosely coupled 

services for easier swap-ins and swap-outs

• Scalability and resilience improved
- Via use of shared platform common services

• Separation of Application Layer from Data 
Layer

• Extend and use common platform capabilities
- DBaaS for Data Store 
- Runtime catalog instead of catalog cache
- Yang and Tosca common parsers
- Ansible servers

Principles Realized / Enhanced
• Scope
- Pluggable Modules

• Imperatives
- Integration Friendly

• Deployment, Resiliency, Scalability
- Scalability
- Availability and Resiliency
- Security
- Platform plumbing (New)

• Implementation
- Shared Services
- Microservices evolvable independently
- Integration-Friendly/Standard APIs
- Software Layered Architecture Abstractions (New)

Controller: Benefits of Suggested Work



Controller Refactoring Example Refactor controller to focus on SL execution, delegate 
common services/Data Mgt to the Shared Platform layer.

Modules Controller (PMO) Controller Framework (FMO) Goals Achieved
Run Time Catalog Cache Controller Platform: Data Mgt., Controller: DBaaS 

client
Reduce footprint of Component

Data Store Controller –MySQL Platform: Data Mgt., Controller: DBaaS 
client

Eliminate DB duplication; unify data 
management

Model Mapper/Parser (yang, 
tosca)

Controller Platform Model Parser/Mapper App Single reusable parser set – no duplicity

Other Utilities Controller Platform – audit, history, logging … Relies on platform services & Reduces Dev $

Cloud API Controller Controller – adapter container Reuse multi-cloud for all cloud/container infra

NB API Handler Controller Controller NB REST adapter Consolidated API adapter across platform

SB adapters (yang/nc, ansible ..) Controller/ODL Platform common service or Controller 
level containers

Consolidated API adapter across platform & 
reuse platform services

Operational/Config Tree Controller ODL Platform: Data Mgt., Controller: DBaaS 
client

Eliminate DB duplication and redundancy

Karaf bundle – service logic 
(java)

Controller ODL Controller microservices Scalable, reusable, modular m-services

Resiliency & Scalability Active-passive Platform - dynamic on-demand scaling Consistent platform scaling for all modules


