
ONAP Modularization

Goal: Evolve ONAP to a more modular, agile architecture:
 Breaking ONAP into smaller reusable components
 Enabling technology swap-out
 Reducing software footprint
 Allowing integration of non-ONAP components

Agenda

• Key ONAP challenges and critical gaps
- Issues identified by the broader ONAP user community

• Architecture principles and approaches
- Guide how to address the challenges

• Articulate succinct definitions and applicability of microservices, cloud-native, service mesh

• Refactor ONAP by leveraging common services to the fullest extent possible

• Approach: Focus on one major ONAP component at a time
- Refactor/re-architect component to address specific challenges

• Example: ONAP controller: …. Coming soon
- Challenges, suggested steps, and phased realization plan

Goal and Agenda

Problem Statement

• There is a general perception that ONAP is too complex, too big and hard to
make changes.

• Modules are monolithic (SDN-C, SO) and large, not sharing common utilities

• Service providers might have a specific module already implement and
would like to integrate that module into ONAP (e.g. leveraging an external
controller or orchestrator for some existing deployed technology)

• Service providers would like to deploy ONAP incrementally, whereas today
ONAP supports all-or-nothing approach

• Not all ONAP modules take full advantage of cloud-native microservices

Can incorporate additional issues and/or more details if available

ONAP Architecture Principles

S/W Layered Architecture Abstractions

Legend: Principle not fully realized todayMissing principle

Platform System Data Model

Platform ‘Plumbing’

ONAP Architecture Principles

S/W Layered Architecture Abstractions

Legend: Principle not fully realized todayMissing principle

Platform System Data Model

Platform ‘Plumbing’

Proposal solution coverage

Approach: One component at a time

Approach
1. Focus on solving component-specific problems

2. Adhere to principle of Refactoring

3. Validate new technologies on selected areas before broad use

4. Progressively build a platform of reusable technologies

- Establish project to collect Common Services over time

5. Focused partnership with selected PTLs to validate and refine our approach

6. Learnings from initial implementation will benefit subsequent module conversions

7. Maintain backwards compatibility

Avoids

1. Massive undertaking of decomposing all of ONAP into functional elements in one go

2. Unnecessary disruption to ONAP User Community and Planned Release Delivery

Evolutionary To Maintain Backwards Compatibility (Rather Than Greenfield Approach)

Areas of commonality
1. Resiliency and Traffic Control

• Load balancing
• Timeouts, Deadlines, Retry Budgets, Rate Limiting, Circuit

Breaking
• Recognizing and utilize idempotent behavior
• Canary deployments, A/B tests

2. Security
• Encryption decoupled from applications
• Key rotation and certificate management (w Kubernetes)

3. Observability
• Logging, auditing
• Metrics
• Distributed Tracing

4. Data Persistence
• DBaaS
• Configuration

Toolings and Technologies

1. Microservices

2. Cloud-Native
- Docker

- Kubernetes

3. Service Meshes

Contribute to General OSS efforts

• Large-scale networking support for Docker
and Kubernetes
- Who is better positioned than us to do this?

Create and Deploy Platform ‘Plumbing’

ONAP Architecture – Emphasis on Shared Platform Capabilities

DESIGN-TIME

Policy Creation & Validation

Analytic Application Design

V
N

F
/

P
N

F
O

n
b

o
ar

d
in

g

Resource Onboarding

Service Design

Catalog

Recipe/Eng Rules & Policy Distribution

ONAP Optimization Framework

O
N

A
P

 O
p

e
ra

ti
o

n
s

M
an

ag
e

r

Dashboard OA&M

ONAP External APIs

Common
Services

Application
Authorization

Framework

Logging

Policy
Framework

Active & Available
Inventory

External Registry

Generic NF Controllers (L4-L7)

Data Collection,
Analytics, and Events

Event Correlation

ONAP
Optimization
Framework

SDN Controller
(L0-L3)

Optional External Systems

Network Function Layer

Hypervisor / OS Layer OpenStack AzureVMware RackSpace

…

3rd Party Controller

Kubernetes

VNFs

Public
Cloud

Private
Edge Cloud

Private
DC Cloud

IPMPLS

M
an

ag
ed

En

vi
ro

n
m

en
t

Orchestration

Micro Services Bus / Data Movement (see Note 1)

Closed Loop Design

Change Management Design

Configuration & Life Cycle
Management

Design Test & Certification

CLIOSS / BSS ONAP Portal

Note 1 – Consistent APIs between Orchestration layer and Controllers

Specific VNF Manager Element Management System

RUN-TIME

Common
Services

Multi-Cloud
Adaptation

U-UI

Others

(see Note 1)
(see Note 1)

C
C

SD
K

PNFs

ONAP Components Common
Services

• Enhance Shared Platform
• Expand Common Services
• Create Platform Data Mgmt

• Simplify Components
• Reorganize to Rely on Shared Platform

Abstraction
APIs

Common Platform ‘Plumbing’
Used by all modules

Proposed ONAP Architecture Updates

DESIGN-TIME

Policy Creation & Validation

Analytic Application Design

V
N

F
/

P
N

F
O

n
b

o
ar

d
in

g

Resource Onboarding

Service Design

Catalog

O
N

A
P

 O
p

e
ra

ti
o

n
s

M
an

ag
e

r

Dashboard OA&M

Active &
Available
Inventory

External Registry

ONAP External APIs

Shared Platform

Application
Authorization

Framework

Data Collection,
Analytics, &

Events
Event Correlation

Logging

Policy
Framework

NF Controllers

ONAP
Optimization
Framework

Optional External Systems

Network Function Layer

Hypervisor / OS Layer OpenStack AzureVMware RackSpace

…

3rd Party Controller

Kubernetes

VNFs

Public
Cloud

Private
Edge Cloud

Private
DC Cloud

IPMPLS

M
an

ag
ed

En

vi
ro

n
m

en
t

Orchestration

Closed Loop Design

Change Management Design

Configuration
Management

Design Test & Certification

CLIOSS / BSS ONAP Portal

Specific VNF Manager Element Management System

RUN-TIME

Multi-Cloud
Adaptation

U-UI

C
C

SD
K

PNFs

Common Platform Services

Data Management

Micro Services Bus
Data Movement

Event Mgmt
Access Control

File Transfer/ETL
Traffic Control/Queuing

Audit TracingTesting

Platform
Scaling &
Resiliency

…

Design

Run-Time

Dev

Logs ReplicationHistory

SRs/Orders File Mgmt.Versions

DBaaS
Data/Event Streaming

Repository

Intra-Platform Communications Service Mesh

Life Cycle
Management

ONAP Architecture – Emphasis on Shared Platform Capabilities

DESIGN-TIME

Policy Creation & Validation

Analytic Application Design

V
N

F
/

P
N

F
O

n
b

o
ar

d
in

g

Resource Onboarding

Service Design

Catalog

Recipe/Eng Rules & Policy Distribution

ONAP Optimization Framework

O
N

A
P

 O
p

e
ra

ti
o

n
s

M
an

ag
e

r

Dashboard OA&M

Active &
Available
Inventory

External Registry

ONAP External APIs

Shared Platform

Application
Authorization

Framework

Data Collection,
Analytics, &

Events
Event Correlation

Logging

Policy
Framework

Generic NF
Controllers (L4-L7)SDN Controller

(L0-L3)

ONAP
Optimization
Framework

Optional External Systems

Network Function Layer

Hypervisor / OS Layer OpenStack AzureVMware RackSpace

…

3rd Party Controller

Kubernetes

VNFs

Public
Cloud

Private
Edge Cloud

Private
DC Cloud

IPMPLS

M
an

ag
ed

En

vi
ro

n
m

en
t

Orchestration

Closed Loop Design

Change Management Design

Configuration & Life
Cycle Management

Design Test & Certification

CLIOSS / BSS ONAP Portal

Note 1 – Consistent APIs between Orchestration layer and Controllers

Specific VNF Manager Element Management System

RUN-TIME

Multi-Cloud
Adaptation

U-UI

(see Note 1)
(see Note 1) C

C
SD

K

PNFs

Simplify Components, Rely on Platform Services
Common Platform Services

Data Management

Simplify Components, Rely on Platform Services

Micro Services Bus
Data Movement

Event Mgmt
Access Control

File Transfer/ETL
Traffic Control/Queuing

Audit TracingTesting

Platform
Scaling &
Resiliency

…

Design

Run-Time

Dev

Logs ReplicationHistory

SRs/Orders File Mgmt.Versions

DBaaS
Data/Event Streaming

Repository

Intra-Platform Communications Service Mesh

Expand Shared Platform Communications, Services & Data Mgmt.

DESIGN-TIME

Policy Creation & Validation

Analytic Application Design

V
N

F
/

P
N

F
O

n
b

o
ar

d
in

g

Resource Onboarding

Service Design

Catalog

O
N

A
P

 O
p

e
ra

ti
o

n
s

M
an

ag
e

r

Dashboard OA&M

Active &

Available
Inventory

External Registry

ONAP External APIs

Shared Platform

Application
Authorization

Framework

Data Collection,
Analytics, &

Events
Event Correlation

Logging

Policy
Framework

Generic NF
Controllers (L4-L7)SDN Controller

(L0-L3)

ONAP
Optimization
Framework

Optional External Systems

Network Function Layer

Hypervisor / OS Layer OpenStack AzureVMware RackSpace

…

3rd Party Controller

Kubernetes

VNFs

Public
Cloud

Private
Edge Cloud

Private
DC Cloud

IPMPLS

M
an

ag
e

d

En
vi

ro
n

m
e

n
t

Orchestration

Closed Loop Design

Change Management Design

Configuration & Life

Cycle Management

Design Test & Certification

CLIOSS / BSS ONAP Portal

Specific VNF Manager Element Management System

RUN-TIME

Multi-Cloud
Adaptation

U-UI

(see Note 1)
(see Note 1)

C
C

SD
K

PNFs

Common Platform Services

Data Management

Micro Services Bus
Data Movement

Event Mgmt
Access Control

File Transfer/ETL
Traffic Control/Queuing

Audit TracingTesting

Platform
Scaling &
Resiliency

…

Design

Run-Time

Dev

Logs ReplicationHistory

SRs/Orders File Mgmt.Versions

DBaaS
Data/Event Streaming

Repository

Intra-Platform Communications Service Mesh

Shared Platform & Plumbing Supporting ONAP Components

ONAP Components
• Functions

‒ Decompose toward modular, stateless
microservices frameworks

‒ Rely on Shared Platform Capabilities
‒ Keep to leverage cloud native auto-heal/auto-scale

• Characteristics
‒ Non-Duplicating
‒ Consolidate and minimize footprint

Shared Platform
• Functions

‒ Platform common services (shared utilities)
‒ Resilience, failover, maintainability, operational consistency
‒ Persistent Platform Data Management

• Characteristics
‒ Must build first and must mature
‒ Changes less often
‒ View as a whole

Shared Platform

Application
Authorization

Framework
Logging

ONAP
Optimization
Framework

Common Platform Services

Data Management

Micro Services Bus
Data Movement

Event Management
Access Control

File Transfer/ETL
Traffic Control/Queuing

Audit TracingTesting

Platform
Scaling &
Resiliency

…

Design

Run-Time

Dev

Logs ReplicationHistory

SRs/Orders File Mgmt.Versions

DBaaS
Data/Event Streaming

Repository

Intra-Platform Communications

Service Mesh

In Summary

Breaking ONAP into smaller reusable components
• Decompose ONAP on a component-by-component basis
• Tie directly to addressing current problems
• Validation of approach

Enabling technology swap-out
• Define abstract interfaces between components
• Provide ability to change implementation over time
• Support partial use of ONAP component

Reducing software footprint
• Extract common services into a reusable platform
• Leverage technologies to support evolution (microservices, cloud-native, service mesh)

Allowing integration of non-ONAP components
• Support partial use of ONAP component
• Documented interfaces define integration points

Goal: Evolve ONAP to a more modular, agile architecture

Example Component Modularization

Controllers: Current Issues and Challenges

• Lack of clarity & roles in the controllers (which controller does what?)

• Divergence of controller implementation

• Duplicate and uncoordinated interfaces
- Lack of full Configuration & Lifecycle Management by one controller

- Lack of uniform common services in southbound interfaces

• Tightly coupled to Open Daylight (ODL) could affect modularity and
technology refresh

• Controller scalability (functional and non-functional)
- Functional: Instance(s) for each separate functionality?

- Non-functional: Scalability due to transaction volume and load

• Identify and migrate to common modular services used by multiple
components
- Examples: IP Address Assignment, TOSCA Parser, YANG Parser, Ansible server

• Model-driven architecture not fully implemented

PMO

Controller: Targeted Improvements

Run time
catalog

OOF (for queries) Policy

NF
Controller

Southbound Interface Adapters

Service Logic Processing

ChefNetconf

API Handler

Active & Available
Inventory

Ansible Others…

Orchestration
Data Collection,

Analytics & Events

Closed Loop Actions Inventory
Updates

Orchestration

• Configure

• Audit

• SW upgrade
• Scale in/out

• Stop/start

• Health check

• L0-7 Service Create ??

Supports Model-Driven Lifecycle Mgmt.Service
LogicService

LogicService
Logic

…

Artifact
Distribution

VNFs
PNFs

Multi-
Cloud

Adapter

Multi-VIM/Cloud

MSB/Data Movement

MSB/Data Movement

M
SB

/D
at

a
M

o
ve

m
en

t

CE-2 CE-3

CE-5

CI-2CI-1 ??

CI-4
VNF Descriptors

Run Time Catalog
Cache

Config Templates

Engineering Rules

Service Logic

Policy Cache/Event Match

Operational Tree/Config
Tree (Service Model)

CI-7

CI-6

CI-3

CI-5

CE-4

…

CE-1

Design studio

Configuration Data

VNF Assignment

VNF Topology

VNF State

VNF INV/Config

Model Mapper

Design time
catalog

Service Design
& Creation Controller Framework

Ansible ServerAnsible ServerAnsible Server*

Netconf adapterNetconf adapterNetconf adapter

SB clusters

NB APIHNB APIHNB APIH

M-servicesM-servicesM-services*

Data
Model
Parser

DBaaS
Client

Shared Platform

Application
Authorization

Framework
Logging

ONAP
Optimization
Framework

Common Platform Services

Data Management

Micro Services Bus
Data Movement

Event Mgmt
Access Control

File Xfer/ETL
Traffic Cntl/Queuing

Audit TracingTesting

Platform
Scaling &
Resiliency

…

Design Run Dev

Logs ReplicationHistory

SRs/Orders File Mgmt.Versions

DBaaS
Data/Event

Streaming DS

Cloud
Adapter

Data
Model
Parser

DBaaS
Client

Service Logic Engine ContainerService Logic Engine ContainerService Logic Engine Container

• Extend and expand use of shared platform: AAF, Logging, DMaaP, …
• Common logging, audits and tracing: Platform-wide analytics
• Scaling and Resiliency through platform features (e.g. Kubernetes)
• DBaaS: Use common DB instead of today’s component DB
• Runtime catalog: Avoid caching copy as today
• Decouple from ODL where needed
• *Evolve to autonomous microservices

• Some shared across controller personas
• Some as common services, consumed by any component (e.g., ansible)
• Scalable independently

FMO

M-services* Ansible Server*

Functionality
• Clarified roles and responsibilities
- Necessary pre-req for modularization

• Consistency of common functionality
- Implemented via shared modules & components

• Standardize and abstract common interfaces
- Modularization supports loosely coupled

services for easier swap-ins and swap-outs

• Scalability and resilience improved
- Via use of shared platform common services

• Separation of Application Layer from Data
Layer

• Extend and use common platform capabilities
- DBaaS for Data Store
- Runtime catalog instead of catalog cache
- Yang and Tosca common parsers
- Ansible servers

Principles Realized / Enhanced
• Scope
- Pluggable Modules

• Imperatives
- Integration Friendly

• Deployment, Resiliency, Scalability
- Scalability
- Availability and Resiliency
- Security
- Platform plumbing (New)

• Implementation
- Shared Services
- Microservices evolvable independently
- Integration-Friendly/Standard APIs
- Software Layered Architecture Abstractions (New)

Controller: Benefits of Suggested Work

Controller Refactoring Example Refactor controller to focus on SL execution, delegate
common services/Data Mgt to the Shared Platform layer.

Modules Controller (PMO) Controller Framework (FMO) Goals Achieved
Run Time Catalog Cache Controller Platform: Data Mgt., Controller: DBaaS

client
Reduce footprint of Component

Data Store Controller –MySQL Platform: Data Mgt., Controller: DBaaS
client

Eliminate DB duplication; unify data
management

Model Mapper/Parser (yang,
tosca)

Controller Platform Model Parser/Mapper App Single reusable parser set – no duplicity

Other Utilities Controller Platform – audit, history, logging … Relies on platform services & Reduces Dev $

Cloud API Controller Controller – adapter container Reuse multi-cloud for all cloud/container infra

NB API Handler Controller Controller NB REST adapter Consolidated API adapter across platform

SB adapters (yang/nc, ansible ..) Controller/ODL Platform common service or Controller
level containers

Consolidated API adapter across platform &
reuse platform services

Operational/Config Tree Controller ODL Platform: Data Mgt., Controller: DBaaS
client

Eliminate DB duplication and redundancy

Karaf bundle – service logic
(java)

Controller ODL Controller microservices Scalable, reusable, modular m-services

Resiliency & Scalability Active-passive Platform - dynamic on-demand scaling Consistent platform scaling for all modules

