ONAP Modularization



Goal and Agenda

P
Goal: Evolve ONAP to a more modular, agile architecture:

Breaking ONAP into smaller reusable components

Enabling technology swap-out

Reducing software footprint

Allowing integration of non-ONAP components

K/ K/ K/ K/
0’0 0’0 0’0 0’0

Agenda

» Key ONAP challenges and critical gaps
- Issues identified by the broader ONAP user community

 Architecture principles and approaches
- Guide how to address the challenges

« Articulate succinct definitions and applicability of microservices, cloud-native, service mesh
« Refactor ONAP by leveraging common services to the fullest extent possible

» Approach: Focus on one major ONAP component at a time
- Refactor/re-architect component to address specific challenges

« Example: ONAP controller: .... Coming soon
- Challenges, suggested steps, and phased realization plan

1 THELINUXFOUNDATION



Problem Statement

* There is a general perception that ONAP is too complex, too big and hard to
make changes.

* Modules are monolithic (SDN-C, SO) and large, not sharing common utilities

« Service providers might have a specific module already implement and
would like to integrate that module into ONAP (e.g. leveraging an external
controller or orchestrator for some existing deployed technology)

« Service providers would like to deploy ONAP incrementally, whereas today
ONAP supports all-or-nothing approach

* Not all ONAP modules take full advantage of cloud-native microservices

Can incorporate additional issues and/or more details if available

1 THELINUXFOUNDATION



ONAP Architecture Principles

Lifecycle Support

Standardization

Yendor & Service Agnostic

Common Information Model Approach

Pluggable Modules

Integrated & Centralized Design Studio

Microservices

Shared Services

1 |'
| |
|] — — [ Imperatives H Integration Friendly
' |
| I

Model-Driven

' Metadata & Policy-Driven Automation

Self-Service and User Focused

ONAP Architecture Principles

CI/CD Support [} Implementation } )

Integration-friendly / Standard AP

S/W Layered Architecture Abstractions

Platform System Data Model

Legend: Missing principle

Principle not fully realized today

1 THELINUXFOUNDATION

Multi-tenant Managed Environment

. Backward Compatibility

Cloud Environment Suppaort

II Scalability

“— Deployment, Resiliency, Scalability Support } {

I Platform ’PlumbinL

@ ONAP

OPEN NETWORK AUTOMATION PLATFORM



ONAP Architecture Principles

Lifecycle Support Model-Driven

Standardization * ' Metadata & Policy-Driven Automation

Yendor & Service Agnostic Self-Service and User Focused

|
Common Information Model Approach | — o [ Imperatives H Integration Friendly *
* ) |

Pluggable Modules Multi-tenant Managed Environment

Integrated & Centralized Design Studio | . Backward Compatibility «
ONAP Architecture Principles

Microservices « \ ClnudEnvimnmEmSuppurt «

Shared Services

II Scalability

CI/CD Support | ﬁmplementatinn % i [ Deployment, Resiliency, Scalability Support } A».rauamy&ﬁesn lency *
Integration-friendly / Standard APl «

S/W Layered Architecture Abstractions I Platform ’PlumbinL «
Platform System Data Model

Legend: Missing principle Principle not fully realized today ‘ Proposal solution coverage

1 THELINUXFOUNDATION

@ ONAP s

EN NETWORK AUTOMATION PLATFORM




Approach: One component at a time

[ Evolutionary To Maintain Backwards Compatibility (Rather Than Greenfield Approach) }

Approach

1. Focus on solving component-specific problems

2. Adhere to principle of Refactoring

3. Validate new technologies on selected areas before broad use
4

Progressively build a platform of reusable technologies
- Establish project to collect Common Services over time

5. Focused partnership with selected PTLs to validate and refine our approach
6. Learnings from initial implementation will benefit subsequent module conversions
7. Maintain backwards compatibility

Avoids

1. Massive undertaking of decomposing all of ONAP into functional elements in one go
2. Unnecessary disruption to ONAP User Community and Planned Release Delivery

D)
1 THELINUXFOUNDATION SDWNAP °




Create and Deploy Platform ‘Plumbing’

Areas of commonality

1. Resiliency and Traffic Control
* Load balancing
* Timeouts, Deadlines, Retry Budgets, Rate Limiting, Circuit
Breaking
* Recognizing and utilize idempotent behavior
* Canary deployments, A/B tests

2. Security
* Encryption decoupled from applications
* Key rotation and certificate management (w Kubernetes)

3. Observability
* Logging, auditing
* Metrics
 Distributed Tracing

4. Data Persistence
* DBaaS
e Configuration

1 THELINUXFOUNDATION

Toolings and Technologies
1. Microservices
2. Cloud-Native

- Docker
- Kubernetes

3. Service Meshes

Contribute to General OSS efforts

« Large-scale networking support for Docker
and Kubernetes
- Who is better positioned than us to do this?




ONAP Architecture — Emphasis on Shared Platform Capabilities

APlIs
Common
Services

ONAP Components

* Simplify Components
* Reorganize to Rely on Shared Platform ~+ Enhance Shared Platform
'« Expand Common Services

~* Create Platform Data Mgmt

< Common Platform ‘Plumbing’
Used by all modules

1 THELINUX FOUNDATION o Wocctows



Proposed ONAP Architecture Updates

CLI ONAP Portal
ONAP External APIs

RUN-TIME

Resource Onboarding Data Collection, Active &

Polic Analytics, & i
y y Orchestration AT )G Application ONAP

Service Design Framework Events Inventory Authorization || Optimization Logging
Event Correlation External Registry Framework Framework

Platform
Scaling &
Resiliency

Policy Creation & Validation Audit — ——

Analytic Application Design

Micro Services Bus Event Mgmt File Transfer/ETL
Data Movement Access Control Traffic Control/Queuing

Intra-Platform Communications Service Mesh

Closed Loop Design

ONAP Operations Manager

Change Management Design
. NF ContrO"erS Catalog
Design Test & Certification Multi-Cloud Products | |_policies | Design

i Services | | _Analytics ; 1 ‘
Adaptatlon Configuration Life Cycle el Run-Time SRs/Orders Versions File Mgmt.
Ma nagement Management Eng. Rules -an;rgllﬂs Dev DBaaS Data/Event $tream|ng
Recipe: Repository
Catalog

VNF / PNF Onboarding

Logs History Replication

v

Environment

N
£1 THELINUX FOUNDATION © ONAP

OPEN NETWORK AUTOMATION PLATFORM



ONAP Architecture — Emphasis on Shared Platform Capabilities

cL ____uu ONAP Portal

ONAP External APIs

Simplify Components, Rely on Platform Services

Application ONAP
Authorization [| Optimization Logging
Framework Framework

3 3 . ncting cing
Expand Shared Platform Communications, Services & Data Mgmt.

Intra-Platform Communications Micro Services Bus Event Mgmt File Transtef7ETL
uni ! Data Movement Access Control Traffic Control/Queuing

Platform
Scaling &
Resiliency

ONAP Operations Manager

Catalog

b0
.E
©
S
©
o
2
c
o
Ll
2
a
~
Ll
2
>

Logs History Replication

Products Policies Design,
Services . \Analytics ; SRs/Orders | Versions | File Mgmt
Resources Processes Run-Time 9 .

Eng. Rules | |Control Loops Dev DBaaS Data/Event Streamin g
~ Recipes Repository

Simplify Components, Rely on Platform Services

____________________________________________________________________________________________________________________

i q : =
Recipe/Eng Rules & Policy Distribution | Network Functionlayer | WNF | . ks é

- N e oY)
ONAP Optimization Framework  Hypervisor / OS Layer| Openstack || VMware || Azure | Kubernetes | Rackspace | © <

_____________________________________________________________________________________________________ : © =
Note 1 — Consistent APIs between Orchestration layer and Controllers _ 9 = E

Private
e Cloud

MPLS ‘Private j IP C EUb”C )
C Cloud N ONAP

CITHELINUX FOUNDATION N Pt L0 I




Shared Platform & Plumbing Supporting ONAP Components

0SS / BSS

DESIGN-TIME

[ M uvu

xternal S

3
Orchestration l

Dashboard OA&M

Shared Platform

Resource Onboarding

Policy Analytics, &

. . Application ONAP
Service Design Framework Events Authorization | Optimization Logging
Event Correlation Framework Framework

Common Platform Services

ONAP Portal

Platform
Scaling &
Resiliency

Analytic Application Design
Event Mgmt
Access Control

[
1 n - Micro Services Bus
i [Intra-Platform Communications Data Movement

Closed Loop Design

File Transfer/ETL
Traffic Control/Queuing

Data Management

Change Management Design

VNF / PNF Onboarding

. | Generic NF
Design Test & Certification Multl-CIv.:)ud SDN Controller || Controllers (L4-L7)
e Adaptation y . .
(LO-L3) Configuration & Life
Catalog (seeNote 1) Cycle Management

Specific VNF Manager

Element Management System |

Managed
Environment

ONAP Components

* Functions

— Decompose toward modular, stateless

microservices frameworks

— Rely on Shared Platform Capabilities

— Keep to leverage cloud native auto-heal/auto-scale
* Characteristics

— Non-Duplicating

— Consolidate and minimize footprint

1 THELINUXFOUNDATION

Intra-Platform Communications

ONAP
Optimization
Framework

Application
Authorization
Framework

Platform
Scaling &
Resiliency

Logging

Audit Testing Tracing

File Transfer/ETL
Traffic Control/Queuing

Micro Services Bus
Data Movement

Event Management
Access Control

Catalog

Logs History Replication

Policies

Services Analytics i SRs/Orders i i
ol ool Run-Time / Versions File Mg mt.
Eng. Rules | |Control Loops Dev DBaaS Data/Event Streaming

Recipes

Repository

Shared Platform

* Functions
— Platform common services (shared utilities)
— Resilience, failover, maintainability, operational consistency
— Persistent Platform Data Management
* Characteristics
— Must build first and must mature
— Changes less often
— View as a whole

©ONAP

OPEN NETWORK AUTOMATION PLATFORM



In Summary

Goal: Evolve ONAP to a more modular, agile architecture

Breaking ONAP into smaller reusable components

« Decompose ONAP on a component-by-component basis
* Tie directly to addressing current problems
« Validation of approach

Enabling technology swap-out

« Define abstract interfaces between components

 Provide ability to change implementation over time

e Support partial use of ONAP component
Reducing software footprint

 Extract common services into a reusable platform _ _ _

» Leverage technologies to support evolution (microservices, cloud-native, service mesh)
Allowing integration of non-ONAP components

e Support partial use of ONAP component
« Documented interfaces define integration points

1 THELINUXFOUNDATION



Example Component Modularization



Controllers: Current Issues and Challenges

 Lack of clarity & roles in the controllers (which controller does what?)
* Divergence of controller implementation

* Duplicate and uncoordinated interfaces
- Lack of full Configuration & Lifecycle Management by one controller
- Lack of uniform common services in southbound interfaces

* Tightly coupled to Open Daylight (ODL) could affect modularity and
technology refresh

 Controller scalabllity (functional and non-functional)
- Functional: Instance(s) for each separate functionality?
- Non-functional: Scalability due to transaction volume and load

e Identify and migrate to common modular services used by multiple
components
- Examples: IP Address Assignment, TOSCA Parser, YANG Parser, Ansible server
* Model-driven architecture not fully implemented
£1THELINUX FOUNDATION @ ONAP




Controller: Targeted Improvements

Orchestration Closed Loop Actions

OOF (for queries)

Service Design  Design time Run time
& Creation catalog catalog

Policy
Data Collection,
Analytics & Events

Orchestration

g ) E I S

MSB/Data IYlovement
TE-

-
c o . .

g — Cl-4 [ Service Logic Processing

o on — Supports Model-Driven Lifecycle Mgmt.
o * Configure « Stop/start

% neering Rule * Audit * Health check

= h *SW upgrade * LO-7 Service Create ??

Q — *Scale in/out oo

) .

7 -

S Ct6

Southbound Interface Adapters

\Y ulti-
Cloud Chef
Adapter
N J

NF AP! Handler
1
Controller c1-1 7 . ch
Operational Tree/Config

Tree (Service Model)
Cache I -

Inventory
Updates

Active & Available
Inventory
y

Cl-7

VNFs

Multi-VIM/Cloud PNEs

1 THELINUXFOUNDATION

Application ONAP
Authorization Optimization Logging
Framework Framework

[
Controller Framework

Platform
Scaling &
Resiliency

Audit Testing Tracing

[_ Data
l NB APIH Model

[L[ Yser
Service Logic Engine Container ]:

g g Micro Services Bus Event Mgmt File Xfer/ETL
DBaaS Data Movement  Access Control Traffic Cntl/Queuing

SB clusters Catalog
[[[ Ansible Server* J _ Products | (_Policies Logs History Replication
- Services | | Analytics
Resources | | Processes SRs/Orders Versions File Mgmt.
[—[[ Netconf adapter ] Eng. Ruies ) (Controlloops
s DBaaS Data/Event

\ >

Streaming DS

Extend and expand use of shared platform: AAF, Logging, DMaaP, ...
Common logging, audits and tracing: Platform-wide analytics
Scaling and Resiliency through platform features (e.g. Kubernetes)
DBaaS: Use common DB instead of today’s component DB
Runtime catalog: Avoid caching copy as today
Decouple from ODL where needed
*Evolve to autonomous microservices
* Some shared across controller personas
* Some as common services, consumed by any component (e.g., ansible)

* Scalable independently
Pz N
@ONAP

OPEN NETWORK AUTOMATION PLATFORM



Controller: Benefits of Suggested Work

Functionality Principles Realized / Enhanced
 Clarified roles and responsibilities e Scope
- Necessary pre-req for modularization - Pluggable Modules
« Consistency of common functionality * Imperatives
- Implemented via shared modules & components - Integration Friendly
- Standardize and abstract common interfaces  « Deployment, Resiliency, Scalability
- Modularization supports loosely coupled - Scalability
services for easier swap-ins and swap-outs - Availability and Resiliency
 Scalability and resilience improved - Security
- Via use of shared platform common services - Platform plumbing (New)
« Separation of Application Layer from Data « Implementation
Layer o - Shared Services
« Extend and use common platform capabilities - Microservices evolvable independently
- DBaas for Data Store - Integration-Friendly/Standard APIs
- Runtime catalog instead of catalog cache - Software Layered Architecture Abstractions (New)

- Yang and Tosca common parsers
- Ansible servers

A\ |
1 THE LINUX FOUNDATION @ ONAP




" Refactor controller to focus on SL execution, delegate
CO ntrOI Ier RefaCtO [ ng Exam ple common services/Data Mgt to the Shared Platform layer.

m Controller (PMO)| Controller Framework (FMO) Goals Achieved

Run Time Catalog Cache Controller Platform: Data Mgt., Controller: DBaaS Reduce footprint of Component
client
Data Store Controller —-MySQL  Platform: Data Mgt., Controller: DBaaS Eliminate DB duplication; unify data
client management
Model Mapper/Parser (yang,  Controller Platform Model Parser/Mapper App Single reusable parser set — no duplicity
tosca)
Other Utilities Controller Platform — audit, history, logging ... Relies on platform services & Reduces Dev $
Cloud API Controller Controller — adapter container Reuse multi-cloud for all cloud/container infra
NB APl Handler Controller Controller NB REST adapter Consolidated APl adapter across platform
SB adapters (yang/nc, ansible ..) Controller/ODL Platform common service or Controller Consolidated APl adapter across platform &
level containers reuse platform services
Operational/Config Tree Controller ODL Platform: Data Mgt., Controller: DBaaS Eliminate DB duplication and redundancy
client
Karaf bundle — service logic Controller ODL Controller microservices Scalable, reusable, modular m-services
(java)
Resiliency & Scalability Active-passive Platform - dynamic on-demand scaling  Consistent platform scaling for all modules

A\ |
1 THE LINUX FOUNDATION @ ONAP 7



