
ONAP Modularization

AT&T – Vimal Begwani, John Jensen, John Ng

Goal: Evolve ONAP to a more modular, agile architecture:
v Breaking ONAP components into smaller reusable modules
v Enabling technology swap-out for modules
v Reducing software footprint
v Allowing integration of non-ONAP components

Agenda
• Key ONAP challenges and critical gaps

� Issues identified by the broader ONAP user community
• Architecture principles and approaches

� Guide how to address the challenges
• Articulate succinct definitions and applicability of microservices, cloud-native, service mesh
• Refactor ONAP by leveraging common services to the fullest extent possible
• Approach: Focus on one major ONAP component at a time

� Refactor/re-architect component to address specific challenges
• Example: ONAP controller: …. Coming soon

� Challenges, suggested steps, and phased realization plan

Goal and Agenda

Problem Statement

• There is a general perception that ONAP is too complex, too big and hard to
make changes.

• Modules are monolithic (SDN-C, SO) and large, not sharing common utilities
• Service providers might have a specific module already implement and

would like to integrate that module into ONAP (e.g. leveraging an external
controller or orchestrator for some existing deployed technology)

• Service providers would like to deploy ONAP incrementally, whereas today
ONAP supports all-or-nothing approach

• Not all ONAP modules take full advantage of cloud-native microservices

Can incorporate additional issues and/or more details if available

ONAP Architecture Principles

S/W Layered Architecture Abstractions

Legend: Principle not fully realized todayMissing principle

Platform System Data Model

Platform ‘Plumbing’

ONAP Architecture Principles

S/W Layered Architecture Abstractions

Legend: Principle not fully realized todayMissing principle

Platform System Data Model

Platform ‘Plumbing’

Proposal solution coverage

Approach: One component at a time

Approach
1. Focus on solving component-specific problems
2. Adhere to principle of Refactoring
3. Validate new technologies on selected areas before broad use
4. Progressively build a platform of reusable technologies

� Establish project to collect Common Services over time
5. Focused partnership with selected PTLs to validate and refine our approach
6. Learnings from initial implementation will benefit subsequent module conversions
7. Maintain backwards compatibility

Avoids
1. Massive undertaking of decomposing all of ONAP into functional elements in one go
2. Unnecessary disruption to ONAP User Community and Planned Release Delivery

Evolutionary To Maintain Backwards Compatibility (Rather Than Greenfield Approach)

Areas of commonality
1. Resiliency and Traffic Control

• Load balancing
• Timeouts, Deadlines, Retry Budgets, Rate Limiting, Circuit

Breaking
• Recognizing and utilize idempotent behavior
• Canary deployments, A/B tests

2. Security
• Encryption decoupled from applications
• Key rotation and certificate management (w Kubernetes)

3. Observability
• Logging, auditing
• Metrics
• Distributed Tracing

4. Data Persistence
• DBaaS
• Configuration

Toolings and Technologies
1. Microservices
2. Cloud-Native (e.g. CNCF)

� Docker
� Kubernetes
� Service Meshes

Contribute to General OSS efforts
• Large-scale networking support for Docker

and Kubernetes
� Who is better positioned than us to do this?

Create and Deploy Platform ‘Plumbing’

ONAP Architecture – Emphasis on Shared Platform Capabilities

DESIGN-TIME

Policy Creation & Validation

Analytic Application Design

VN
F /

 P
NF

 O
nb

oa
rd

in
g

Resource Onboarding

Service Design

Catalog

Recipe/Eng Rules & Policy Distribution

ONAP Optimization Framework

ON
AP

 O
pe

ra
tio

ns
 M

an
ag

er
 Dashboard OA&M

ONAP External APIs

Common
Services

Application
Authorization

Framework

Logging

Policy
Framework

Active & Available
Inventory

External Registry

Generic NF Controllers (L4-L7)

Data Collection,
Analytics, and Events

Event Correlation

ONAP
Optimization
Framework

SDN Controller
(L0-L3)

Optional External Systems

Network Function Layer

Hypervisor / OS Layer OpenStack AzureVMware RackSpace

…
3rd Party Controller

Kubernetes

VNFs

Public
Cloud

Private
Edge Cloud

Private
DC Cloud

IPMPLS

M
an

ag
ed

En

vi
ro

nm
en

t

Orchestration

Micro Services Bus / Data Movement (see Note 1)
Closed Loop Design

Change Management Design

Configuration & Life Cycle
Management

Design Test & Certification

CLIOSS / BSS ONAP Portal

Note 1 – Consistent APIs between Orchestration layer and Controllers

Specific VNF Manager Element Management System

RUN-TIME

Common
Services

Multi-Cloud
Adaptation

U-UI

Others

(see Note 1)
(see Note 1)

CC
SD

K

PNFs

ONAP Components Common
Services

• Enhance Shared Platform
• Expand Common Services
• Create Platform Data Mgmt

• Simplify Components
• Reorganize to Rely on Shared Platform

Abstraction
APIs

Common Platform ‘Plumbing’
Used by all modules

Proposed ONAP Architecture Updates

DESIGN-TIME

Policy Creation & Validation

Analytic Application Design

V
N

F
/

PN
F

O
nb

oa
rd

in
g

Resource Onboarding

Service Design

Catalog

O
N

A
P

O
pe

ra
ti

on
s

M
an

ag
er

Dashboard OA&M

Active &
Available
Inventory

External Registry

ONAP External APIs

Shared Platform

Application
Authorization

Framework

Data Collection,
Analytics, &

Events
Event Correlation

Logging

Policy
Framework

NF Controllers

ONAP
Optimization
Framework

Optional External Systems

Network Function Layer

Hypervisor / OS Layer OpenStack AzureVMware RackSpace

…
3rd Party Controller

Kubernetes

VNFs

Public
Cloud

Private
Edge Cloud

Private
DC Cloud

IPMPLS

M
an

ag
ed

En

vi
ro

nm
en

t

Orchestration

Closed Loop Design

Change Management Design

Configuration
Management

Design Test & Certification

CLIOSS / BSS ONAP Portal

Specific VNF Manager Element Management System

RUN-TIME

Multi-Cloud
Adaptation

U-UI

CC
SD

K

PNFs

Common Platform Services

Data Management

Micro Services Bus
Data Movement

Event Mgmt
Access Control

File Transfer/ETL
Traffic Control/Queuing

Audit TracingTesting

Platform
Scaling &
Resiliency

…

Design

Run-Time

Dev

Logs ReplicationHistory

SRs/Orders File Mgmt.Versions

DBaaS Data/Event Streaming
Repository

Intra-Platform Communications Service Mesh

Life Cycle
Management

ONAP Architecture – Emphasis on Shared Platform Capabilities

DESIGN-TIME

Policy Creation & Validation

Analytic Application Design

VN
F

/ P
NF

 O
nb

oa
rd

in
g

Resource Onboarding

Service Design

Catalog

Recipe/Eng Rules & Policy Distribution

ONAP Optimization Framework

O
N

AP
 O

pe
ra

tio
ns

 M
an

ag
er

 Dashboard OA&M

Active &
Available
Inventory

External Registry

ONAP External APIs

Shared Platform
Application

Authorization
Framework

Data Collection,
Analytics, &

Events
Event Correlation

Logging

Policy
Framework

Generic NF
Controllers (L4-L7)SDN Controller

(L0-L3)

ONAP
Optimization
Framework

Optional External Systems

Network Function Layer

Hypervisor / OS Layer OpenStack AzureVMware RackSpace

…

3rd Party Controller

Kubernetes

VNFs

Public

Cloud

Private

Edge Cloud

Private

DC Cloud

IPMPLS

M
a

n
a

g
e

d

E
n

v
ir

o
n

m
e

n
t

Orchestration

Closed Loop Design

Change Management Design

Configuration & Life

Cycle Management

Design Test & Certification

CLIOSS / BSS ONAP Portal

Note 1 – Consistent APIs between Orchestration layer and Controllers

Specific VNF Manager Element Management System

RUN-TIME

Multi-Cloud
Adaptation

U-UI

(see Note 1)
(see Note 1) CC

SD
K

PNFs

Simplify Components, Rely on Platform Services
Common Platform Services

Data Management

Simplify Components, Rely on Platform Services

Micro Services Bus
Data Movement

Event Mgmt
Access Control

File Transfer/ETL
Traffic Control/Queuing

Audit TracingTesting

Platform
Scaling &
Resiliency

…

Design

Run-Time

Dev

Logs ReplicationHistory

SRs/Orders File Mgmt.Versions

DBaaS Data/Event Streaming
Repository

Intra-Platform Communications Service Mesh
Expand Shared Platform Communications, Services & Data Mgmt.

DESIGN-TIME

Policy Creation & Validation

Analytic Application Design

V
N

F
/

PN
F

O
nb

oa
rd

in
g

Resource Onboarding

Service Design

Catalog

O
N

A
P

O
pe

ra
ti

on
s

M
an

ag
er

 Dashboard OA&M

Active &
Available
Inventory

External Registry

ONAP External APIs

Shared Platform

Application
Authorization

Framework

Data Collection,
Analytics, &

Events
Event Correlation

Logging

Policy
Framework

Generic NF
Controllers (L4-L7)SDN Controller

(L0-L3)

ONAP
Optimization
Framework

Optional External Systems

Network Function Layer

Hypervisor / OS Layer OpenStack AzureVMware RackSpace

…
3rd Party Controller

Kubernetes

VNFs

Public
Cloud

Private
Edge Cloud

Private
DC Cloud

IPMPLS

M
an

ag
ed

En

vi
ro

nm
en

t

Orchestration

Closed Loop Design

Change Management Design

Configuration & Life
Cycle Management

Design Test & Certification

CLIOSS / BSS ONAP Portal

Specific VNF Manager Element Management System

RUN-TIME

Multi-Cloud
Adaptation

U-UI

(see Note 1)(see Note 1) CC
SD

K

PNFs

Common Platform Services

Data Management

Micro Services Bus
Data Movement

Event Mgmt
Access Control

File Transfer/ETL
Traffic Control/Queuing

Audit TracingTesting

Platform
Scaling &
Resiliency

…

Design

Run-Time

Dev

Logs ReplicationHistory

SRs/Orders File Mgmt.Versions

DBaaS Data/Event Streaming
Repository

Intra-Platform Communications Service Mesh

Shared Platform & Plumbing Supporting ONAP Components

ONAP Components
• Functions

‒ Decompose toward modular, stateless

microservices frameworks

‒ Rely on Shared Platform Capabilities

‒ Keep to leverage cloud native auto-heal/auto-scale

• Characteristics
‒ Non-Duplicating

‒ Consolidate and minimize footprint

Shared Platform
• Functions

‒ Platform common services (shared utilities)

‒ Resilience, failover, maintainability, operational consistency

‒ Persistent Platform Data Management

• Characteristics
‒ Must build first and must mature

‒ Changes less often

‒ View as a whole

Shared Platform

Application
Authorization

Framework
Logging

ONAP
Optimization
Framework

Common Platform Services

Data Management

Micro Services Bus
Data Movement

Event Management
Access Control

File Transfer/ETL
Traffic Control/Queuing

Audit TracingTesting

Platform
Scaling &
Resiliency

…

Design

Run-Time

Dev

Logs ReplicationHistory

SRs/Orders File Mgmt.Versions

DBaaS Data/Event Streaming
Repository

Intra-Platform Communications

Service Mesh

In Summary

Breaking ONAP components into smaller reusable modules
• Decompose ONAP on a component-by-component basis
• Tie directly to addressing current problems
• Validation of approach

Enabling technology swap-out for modules
• Define abstract interfaces between modules
• Provide ability to change implementation over time
• Support partial use of ONAP component

Reducing software footprint
• Extract common services into a reusable platform
• Leverage technologies to support evolution (microservices, cloud-native, service mesh)

Allowing integration of non-ONAP components
• Support partial use of ONAP component
• Documented interfaces define integration points

Goal: Evolve ONAP to a more modular, agile architecture

Example Component Modularization

Controllers: Current Issues and Challenges

• Lack of clarity & roles in the controllers (which controller does what?)
• Divergence of controller implementation
• Duplicate and uncoordinated interfaces

� Lack of full Configuration & Lifecycle Management by one controller
� Lack of uniform common services in southbound interfaces

• Tightly coupled to Open Daylight (ODL) could affect modularity and
technology refresh

• Controller scalability (functional and non-functional)
� Functional: Instance(s) for each separate functionality?
� Non-functional: Scalability due to transaction volume and load

• Identify and migrate to common modular services used by multiple
components
� Examples: IP Address Assignment, TOSCA Parser, YANG Parser, Ansible server

• Model-driven architecture not fully implemented

PMO
Controller: Targeted Improvements

Run time
catalog

OOF (for queries) Policy

NF
Controller

Southbound Interface Adapters

Service Logic Processing

ChefNetconf

API Handler

Active & Available
Inventory

Ansible Others…

Orchestration Data Collection,
Analytics & Events

Closed Loop Actions Inventory
Updates

Orchestration

• Configure
• Audit
• SW upgrade
• Scale in/out

• Stop/start
• Health check
• L0-7 Service Create ??

Supports Model-Driven Lifecycle Mgmt.Service
LogicService

LogicService
Logic

…

Artifact
Distribution

VNFs
PNFs

Multi-
Cloud

Adapter

Multi-VIM/Cloud

MSB/Data Movement

MSB/Data Movement

M
SB

/D
at

a
M

ov
em

en
t

CE-2 CE-3

CE-5

CI-2CI-1 ??

CI-4VNF Descriptors

Run Time Catalog
Cache

Config Templates
Engineering Rules

Service Logic

Policy Cache/Event Match

Operational Tree/Config
Tree (Service Model)

CI-7

CI-6

CI-3

CI-5

CE-4

…

CE-1

Design studio

Configuration Data

VNF Assignment

VNF Topology

VNF State

VNF INV/Config

Model Mapper

Design time
catalog

Service Design
& Creation Controller Framework

Ansible ServerAnsible ServerAnsible Server*

Netconf adapterNetconf adapterNetconf adapter

SB clusters

NB APIHNB APIHNB APIH

Data
Model
Parser

DBaaS
Client

Shared Platform

Application
Authorization

Framework
Logging

ONAP
Optimization
Framework

Common Platform Services

Data Management

Micro Services Bus
Data Movement

Event Mgmt
Access Control

File Xfer/ETL
Traffic Cntl/Queuing

Audit TracingTesting

Platform
Scaling &
Resiliency

…

Design Run Dev

Logs ReplicationHistory

SRs/Orders File Mgmt.Versions

DBaaS Data/Event
Streaming DS

Cloud
Adapter

Data
Model
Parser

DBaaS
Client

Service Logic Engine ContainerService Logic Engine ContainerService Logic Engine Container

• Extend and expand use of shared platform: AAF, Logging, DMaaP, …
• Common logging, audits and tracing: Platform-wide analytics
• Scaling and Resiliency through platform features (e.g. Kubernetes)
• DBaaS: Use common DB instead of today’s component DB
• Runtime catalog: Avoid caching copy as today
• Decouple from ODL where needed
• *Evolve to autonomous microservices

• Some shared across controller personas
• Some as common services, consumed by any component (e.g., ansible)
• Scalable independently

FMO

Assignment
Microservices* Ansible Server*

Config/LCM Function
Microservices*

Config/LCM Function
Microservices*

Config/LCM Function
Microservices*

Model Map/Parser
Microservices*

Functionality
• Clarified roles and responsibilities

� Necessary pre-req for modularization
• Consistency of common functionality

� Implemented via shared modules & components
• Standardize and abstract common interfaces

� Modularization supports loosely coupled
services for easier swap-ins and swap-outs

• Scalability and resilience improved
� Via use of shared platform common services

• Separation of Application Layer from Data
Layer

• Extend and use common platform capabilities
� DBaaS for Data Store
� Runtime catalog instead of catalog cache
� Yang and Tosca common parsers
� Ansible servers

Principles Realized / Enhanced
• Scope

� Pluggable Modules
• Imperatives

� Integration Friendly
• Deployment, Resiliency, Scalability

� Scalability
� Availability and Resiliency
� Security
� Platform plumbing (New)

• Implementation
� Shared Services
� Microservices evolvable independently
� Integration-Friendly/Standard APIs
� Software Layered Architecture Abstractions (New)

Controller: Benefits of Suggested Work

Controller Refactoring Example Refactor controller to focus on SL execution, delegate
common services/Data Mgt to the Shared Platform layer.

Modules Controller (PMO) Controller Framework (FMO) Goals Achieved
Run Time Catalog Cache Controller Platform: Data Mgt., Controller: DBaaS

client
Reduce footprint of Component

Data Store Controller –MySQL Platform: Data Mgt., Controller: DBaaS
client

Eliminate DB duplication; unify data
management

Model Mapper/Parser (yang,
tosca)

Controller Platform Model Parser/Mapper App Single reusable parser set – no duplicity

Other Utilities Controller Platform – audit, history, logging … Relies on platform services & Reduces Dev $
Cloud API Controller Controller – adapter container Reuse multi-cloud for all cloud/container infra
NB API Handler Controller Controller NB REST adapter Consolidated API adapter across platform
SB adapters (yang/nc, ansible ..) Controller/ODL Platform common service or Controller

level containers
Consolidated API adapter across platform &
reuse platform services

Operational/Config Tree Controller ODL Platform: Data Mgt., Controller: DBaaS
client

Eliminate DB duplication and redundancy

Karaf bundle – service logic
(java)

Controller ODL Controller microservices Scalable, reusable, modular m-services

Resiliency & Scalability Active-passive Platform - dynamic on-demand scaling Consistent platform scaling for all modules

ONAP Architecture Principles

19

ONAP Architecture Principles

20

ONAP Architecture Principles: Scope

• Lifecycle Support: ONAP must support a complete life cycle management of software-defined network
functions / services: from VNF On-Boarding, Service Definition, VNF/Service Instantiation, Monitoring,
Upgrade, to retirement

• Standardization: ONAP must support a common approach to manage various network functions from
different vendors
� Standard templates for instantiations
� Standard language for configuration
� Standard telemetry for monitoring and management

• Vendor & Service Agnostic: ONAP Platform must be VNF, Resources, Products, and Service agnostic.
Each service provider or integrator that uses ONAP can manage their specific environment (Resources,
VNFs, Products, and services) by creating necessary meta-data / artifacts using Design Studio to support
their needs / environment.

• Common Information Model approach: ONAP should define a standardized common information model
for all vendors to follow. This will allow ONAP users to quickly onboard and support new VNFs.

• Pluggable Modules: The ONAP architecture should develop and promote VNF standards to allow delivery
of Lego block-like pluggable modules, with standard interfaces for all aspects of lifecycle management (e.g.
instantiation, configuration, telemetry collection, etc.).
Ø Provide common tooling that can be used by microservices to support standard functionality for resiliency, traffic control,

observability and security (viz. service meshes)

• Integrated & Centralized Design Studio: All artifacts required for ONAP components should be able to be
designed from a central ONAP design studio.

21

ONAP Architecture Principles: Business Imperatives

• Automation: ONAP must support Automation at every phase of Lifecycle

• Model Driven: All ONAP modules should be model-driven, avoiding, where possible, programming code. This allows for a
catalog-based reusable repository for network & services lifecycle management.

• Meta-data & Policy Driven Automation: ONAP should support high levels of automation at every phase of lifecycle
management – e.g. onboard, design, deployment, instantiation, upgrade, monitoring, management, to end of life
cycle. These automations should be policy driven, allowing users to dynamically control automation behavior via policy
changes.

• Self-Service & User Focused: ONAP Platform should support a self-service model with a fully integrated user-friendly
design studio to design all facets of lifecycle management (product/ service design, operational automation, etc.). All
interfaces and interactions with ONAP should be user friendly and easy to use.

• Integration Friendly: When an ONAP component relies on software outside of the ONAP project, the dependency on that
external software should be designed to pluggable, API-oriented, supporting multiple possible implementations of that
dependency.

Ø Use of microservices will of necessity document interfaces to be supported and provide reference implementations, both of which will make creation of
alternate versions easier

• Multi-tenancy managed environment: The ONAP platform should support the ability manage multiple tenants and
provide isolation for those tenants.

• Backward Compatibility: ONAP platform should support backward compatibility with every new release.

22

ONAP Architecture Principles: Implementation Approach

• Microservices: ONAP modules should be designed as microservices: service-based with clear, concise function
addressed by each service with loose coupling.

Ø Support extensive use of microservices as a means of supporting (a) loosely-coupled agile development, test, and deployments, (b) runtime scalability,
resilience, and decreased footprint, and (c) feature reusability

• Shared Services: Where applicable, reusable components can be provided as shared services across ONAP
components.

Ø Build out the common services as part of a shared platform, supporting (a) common platform services (e.g. security), (b) data management (e.g. logging), and
(c) intra-platform communications (e.g. traffic controls and tracing)

• CI / CD Support: ONAP is predicated on an accelerated lifecycle for network services. As such, agility is key in all aspects
of ONAP: development of ONAP, designing of network services, and operation of both ONAP and network
services. Principles of continuous integration and deployment should be followed by all modules of the ONAP platform.

Ø Extend and support current CI/CD standards and implementations to support agile development and deployment of individual microservices and introduction
of same in a controlled manner

• Integration Friendly / Standard API: Various service providers and users of ONAP should be able quickly integrate
ONAP with their existing OSS / BSS systems. An open, standards-based architecture with well-defined APIs fosters
interoperability both within ONAP and across complementary projects and applications

Ø Use of microservices will of necessity document interfaces to be supported and provide reference implementations, both of which will make creation of
alternate versions easier. Integration with non-ONAP components similarly facilitated by defining all ONAP APIs interfacing externally.

• Software Layered Architecture Abstractions: Define ONAP as a layered architecture similar to the OSI model for the
internet. Define abstract interfaces between the different layers to support information and request flowing between the
layers in an implementation-independent manner.

• Platform System Data Model: Defines an abstract data model of the objects and entities to be managed by ONAP.

23

ONAP Architecture Principles: Deployment / Resiliency /
Scalability Support
• Cloud Environment Support: All components in ONAP should be virtualized, preferably with support for both

virtual machines and containers. All components should be software-based with no requirement on a specific
hardware platform.
Ø Component refactoring to address current problems will extend the use of microservices, service meshes and cloud-native

technologies, moving to a fuller implementation of this principle

• Scalability: ONAP must be able to manage a small set of VNFs to highly distributed, very large network and
service environment deployed across the globe.
Ø Most refactored microservices will be ephemeral, supporting scalability through dynamic instance creation, movement, restart, and

teardown

• Availability & Resiliency: ONAP must support various deployment and configuration options to meet varying
availability and resiliency needs of various service providers.
Ø Most refactored microservices will be ephemeral, supporting scalability through dynamic instance creation, movement, restart, and

teardown

• Security: All ONAP components should keep security considerations at the fore-front of all architectural
decisions. Security should be a pervasive underlying theme in all aspects of ONAP. The ONAP architecture
should have a flexible security framework, allowing ONAP platform users to meet their security requirements.
Ø Enhance security by decoupling development from the components and modules by providing features as a common service, sidecar

or pluggable module. Support enhanced & automated key rotation and certificate management.

• Platform Plumbing: Identifies areas of commonality and implements reusable solutions that can be used to
support generic needs such as (a) resiliency and traffic control, (b) observability, (c) security, and (d) data
persistence, alleviating the burden of this on the module developers, and speeding up the process accordingly.

R4+ Architecture Slides
Last Update - July 30, 2018

Note: The following Controller Related Slides are pulled from ONAP R4+
Architecture Tiger Team Report (to ARC) deck as reference:
https://wiki.onap.org/download/attachments/16003414/py20181011%20ONAP%20Modularization%20Cons
iderations.pptx?version=4&modificationDate=1539624673000&api=v2

https://wiki.onap.org/download/attachments/16003414/py20181011%20ONAP%20Modularization%20Considerations.pptx?version=4&modificationDate=1539624673000&api=v2

Generic NF Controller Architecture
• Generic NF Controller configures and maintains the health

of VNFs/PNFs/services* (L1-7) throughout their lifecycle.

‒ The Lifecycle Management Functions are a normalization of the
controller aspects of VF-C and APP-C functions into a common,
extensible library

• Programmable network application management platform

‒ Behavior patterns programmed via models and policies

‒ Standards based models & protocols for multi-vendor
implementation

‒ Extensible SB adapter set including vendor specific VNF-Managers

‒ Operational control, version management, software updates, etc.

• Manages the health of VNFs/PNFs within its scope

‒ Policy-based optimization to meet SLAs

‒ Event-based control loop automation to solve local issues near
real-time

• Local source of truth

‒ Manages inventory within its scope

‒ All stages/states of lifecycle

‒ Configuration audits

• Key Attributes of Generic NF Controllers

‒ Intimate with network protocols

‒ Manages the state of services

‒ Provide Deployment Flexibility to meet user scalability / resilience

needs

Key
CE-x

CI-x

Controller External API

Controller Internal API

*How the services are to be handled is for further study
** Configuration Design Tool (CDT) to be integrated into SDC
***CE-6 not needed - see External Controller materials

Configuration
Design Tool UI**

Run time
catalog

OOF (for queries) Policy

Generic NF
Controller

Adapters

Service Logic Processing

Chef

Assigned Resources
Inventory:

Service* Topology
& VNF/PNF State

Netconf

API Handler

Active & Available
Inventory

Service Design
& Creation

Ansible Others…

Orchestration Data Collection,
Analytics & Events

Closed Loop Actions Inventory
Updates

Orchestration

• Configure
• Audit
• SW upgrade
• Scale in/out

• Stop/start
• Health check
• L4-7 Service Create

Supports Model-Driven Lifecycle Mgmt.Service
LogicService

LogicService
Logic

…

Artifact
Distribution

*Not E2E service view. The “Service” view in the
Generic NF Controller is limited its scope of control

Applications
VNFs
PNFs

Multi-
Cloud

Adapter

Multi-VIM/Cloud

MSB/Data Movement

MSB/Data Movement

M
SB

/D
at

a
M

ov
em

en
t

CE-2 CE-3

CE-5

External
System

Adapter (s)

External
3rd Party Controllers

Specific VNF Managers
Element Mgt. Systems

CI-2CI-1

CI-4VNF Descriptors

Repository

Config Templates
Engineering Rules

Service Logic

Policy Cache/Event Match

Operational Tree/Config
Tree (Service Model)

CI-7

CI-6

CI-3

CE-6

CI-5

CE-4

…

CE-1

CE-6 not needed***

https://wiki.onap.org/download/attachments/8225716/ExternalDomainController%20v7.pdf?version=1&modificationDate=1526514991000&api=v2

Generic NF Controller – External/Internal Interface
Definitions

Interface Definitions

CE-1 Distribution of artifacts from Service Design and Creation – artifacts distributed to Run
Time Catalog, GNFC receives notification and pulls from Run Time Catalog
Note: Configuration Design Tool UI to be integrated into Service Design & Creation

CE-2 Service requests from Orchestration
ONAP Optimization Framework (OOF) queries for VNF state and available capacity

CE-3 Closed Loop action requests from Data Collection, Analytics & Events/Policy

CE-4 Inventory retrieval from Active & Available Inventory by Service Logic Processing engine
Inventory updates to Active & Available Inventory by Assigned Resources Inv

CE-5 Lifecycle management requests to Multi-Cloud (e.g., stop/start VM)

CE-6 Lifecycle management requests to an external controller or system that has responsibility
of the target VNF

CI-1 API Handler looks up or retrieves the corresponding Service Logic instance that maps to
NB service request (service/network yang)

CI-2 API Handler calls Service Control Processing to perform the Service Logic on the target
service or network

CI-3 Prior to CI-2, API Handler might query the (in-memory) Operational/Config Trees for the
network or service details (if already existing)

CI-4 Service Control Processing retrieves the Service Logic, Config Templates, Engineering
rules, and Policies as part of processing the requested action

CI-5 Service Control Processing queries and/or updates Operational/Config Trees as part of
making changes to the network (VNFs/PNFs)

CI-6 Service Control Processing requests adapter layer to update/configure VNF/PNF update
using the appropriate adapter for the VNF/PNF

CI-7 Service Control Processing queries and/or updates local Assigned Resources
Store/Inventory as part of making changes to the network (VNFs/PNFs)

Key
CE-x

CI-x

Controller External API

Controller Internal API

Configuration
Design Tool UI**

Run time
catalog

OOF (for queries) Policy

Generic NF
Controller

Adapters

Service Logic Processing

Chef

Assigned Resources
Inventory:

Service* Topology
& VNF/PNF State

Netconf

API Handler

Active & Available
Inventory

Service Design
& Creation

Ansible Others…

Orchestration Data Collection,
Analytics & Events

Closed Loop Actions Inventory
Updates

Orchestration

• Configure
• Audit
• SW upgrade
• Scale in/out

• Stop/start
• Health check
• L4-7 Service Create

Supports Model-Driven Lifecycle Mgmt.Service
LogicService

LogicService
Logic

…

Artifact
Distribution

*Not E2E service view. The “Service” view in the
Generic NF Controller is limited its scope of control

Applications
VNFs
PNFs

Multi-
Cloud

Adapter

Multi-VIM/Cloud

MSB/Data Movement

MSB/Data Movement

M
SB

/D
at

a
M

ov
em

en
t

CE-2 CE-3

CE-5

External
System

Adapter (s)

External
3rd Party Controllers

Specific VNF Managers
Element Mgt. Systems

CI-2CI-1

CI-4VNF Descriptors

Repository

Config Templates
Engineering Rules

Service Logic

Policy Cache/Event Match

Operational Tree/Config
Tree (Service Model)

CI-7

CI-6

CI-3

CE-6

CI-5

CE-4

…

CE-1

CE-6 not needed***

GNFC – External Interface Details

Interface Definitions Beijing Rel. Casablanca Rel. Protocol
/Service

Comments

CE-1 Distribution of artifacts from Service Design and Creation SDCè[no GNFC] SDC è GNFC (trigger)
GNFC è Run Time Catalog (pull)

DMaaP

CE-2 Service requests from Orchestration

Queries from ONAP Optimization Framework (OOF) for
VNF state and available capacity

SO, Portal è[no GNFC]

OOF è [no GNFC]

SO, Portal è GNFC

OOF queries – not in scope?

REST Generic Request API. See next
slide for orchestration
requests for LCM actions.

CE-3 Closed Loop action requests from Data Collection,
Analytics & Events & Policy

DCAE è [no GNFC]

Policy – not in scope

DCAE è GNFC

Policy – not in scope

DMaaP

CE-4 Inventory retrieval from Active & Available Inventory by
Service Logic Processing engine
Inventory updates to Active & Available Inventory by
Assigned Resources Inventory

A&AI ó [no GNFC] A&AI ó GNFC REST

CE-5 Configuration requests for cloud infrastructure
networking
Lifecycle management requests to Multi-Cloud (e.g.,
stop/start VM)

Multi-Cloud – not in scope GNFC è M-Cloud REST

• Controllers are to be Model-Driven – APIs in Dev, Design, Run-Time catalogs
• Payloads: parameter values defined in the platform Data Dictionary (model/meta-data driven)
• CE-6 interface (to external controllers) is not needed and has been deleted. External controller will be interfacing to the whole

ONAP platform – via CE-1 thru CE-4
• Beijing Release does not have an implementation of GNFC
• For Casablanca it is recommended that VF-C and APPC begin to transition toward GNFC

SDN-Controller Architecture
• SDN Controller configures and maintains the health of VNFs/PNFs

for cloud networking (underlay/overlay) and WAN transport
services* throughout their lifecycle

• Programmable network application management platform
‒ Behavior patterns programmed via models and policies
‒ Standards based models & protocols for multi-vendor implementation
‒ Extensible SB adapter set supporting various network config protocols,

including 3rd party controllers
‒ Operational control, coordinated state changes across devices, source of

telemetry/events, etc.

• Manages the health of VNFs/PNFs/transport services in its scope
‒ Policy-based optimization to meet SLAs
‒ Event-based control loop automation to solve local issues near real-time
‒ Action executor for outer control loop automation

• Local source of truth
‒ Manages inventory within its scope
‒ All stages/states of lifecycle
‒ Configuration audits

• Key Attributes of Controllers
− Intimate with network protocols
− Manages the state of services
− Single service/network domain scope per instance

Key
CE-x

CI-x

Controller External API

Controller Internal API

*How the services are to be handled is for further study
** Configuration Design Tool (CDT) to be integrated into SDC
***CE-6 not needed - see External Controller materials

MSB/Data Movement

MSB/Data Movement

M
SB

/D
at

a
M

ov
em

en
t

OOF (for queries) Policy

Service Control
Processing

SDN
Controller

NB Service/Network Yang Models

SB Device Yang Models

API Handler

Adapters

NetConf/
YANG

Multi-Cloud
Network
Adapter

BGP LS/
PCEP Others…

Multi-VIM/Cloud

Active & Available
Inventory

Service Design
& Creation Orchestration Data Collection,

Analytics & Events

Closed Loop Actions Inventory
Updates

OrchestrationArtifact
Distribution

External
System

Adapter (s)

External
3rd Party Controllers

Element Mgt. Systems

CE-2 CE-3

CE-5

Service Logic

Repository

Service
Logic

Service
Logic

Service
Logic

IP/VRF Assign
L2 Service Create
L3 VPN Service Create
SD-WAN Create
TE Tunneling
BGP Config
SW Upgrade
…

…

Configuration Templates

Service/Network Design &
Engineering Rules

Policies

VNFs
PNFs

OpenFlow

Assigned Resources Inventory:
Service* Topology &

VNF/PNF State

Operational Tree/
Config Tree

(Service Model)

CI-2

CI-4
CI-5

CI-3CI-1

CI-6

CI-7

*Not E2E service view. The “Service” view in the
SDN Controller is limited its scope of control

CE-6

CE-4

Configuration
Design Tool UI**

Run time
catalog

CE-1

CE-6 not needed***

Note: Beyond Casablanca, SDNC functionality and software will begin to merge into GNFC

https://wiki.onap.org/download/attachments/8225716/ExternalDomainController%20v7.pdf?version=1&modificationDate=1526514991000&api=v2

SDN-Controller – External/Internal Interface Definitions
Key

CE-x

CI-x

Controller External API

Controller Internal API

Interface Definitions

CE-1 Distribution of artifacts from Service Design and Creation – artifacts distributed to Run Time Catalog, SDNC
receives notification and pulls from Run Time Catalog
Note: Configuration Design Tool UI to be integrated into Service Design & Creation

CE-2 Service requests from Orchestration
Queries from ONAP Optimization Framework (OOF) for VNF state and available capacity

CE-3 Closed Loop action requests from Data Collection, Analytics & Events/Policy

CE-4 Inventory retrieval from Active & Available Inventory by Service Control Processing engine
Inventory updates to Active & Available Inventory by Assigned Resources Inventory

CE-5 Configuration requests for cloud infrastructure networking
Lifecycle management requests to Multi-Cloud (e.g., stop/start VM)

CE-6 Lifecycle management or configuration requests to an external controller or system that has responsibility
of the target VNF

CI-1 API Handler looks up or retrieves the corresponding Service Logic instance that maps to NB service request
(service/network yang)

CI-2 API Handler calls Service Control Processing to perform the Service Logic on the target service or network

CI-3 Prior to CI-2, API Handler might query the (in-memory) Operational/Config Trees for the network or service
details (if already existing)

CI-4 Service Control Processing retrieves the Service Logic, Config Templates, Engineering rules, and Policies as
part of processing the requested action

CI-5 Service Control Processing queries and/or updates Operational/Config Trees as part of making changes to
the network (VNFs/PNFs)

CI-6 Service Control Processing requests adapter layer to update/configure VNF/PNF update using the
appropriate adapter for the VNF/PNF

CI-7 Service Control Processing updates the local Assigned Resources Store/Inventory once network updates are
made successfully

MSB/Data Movement

MSB/Data Movement

M
SB

/D
at

a
M

ov
em

en
t

OOF (for queries) Policy

Service Control
Processing

SDN
Controller

NB Service/Network Yang Models

SB Device Yang Models

API Handler

Adapters

NetConf/
YANG

Multi-Cloud
Network
Adapter

BGP LS/
PCEP Others…

Multi-VIM/Cloud

Active & Available
Inventory

Service Design
& Creation Orchestration Data Collection,

Analytics & Events

Closed Loop Actions Inventory
Updates

OrchestrationArtifact
Distribution

External
System

Adapter (s)

External
3rd Party Controllers

Element Mgt. Systems

CE-2 CE-3

CE-5

Service Logic

Repository

Service
Logic

Service
Logic

Service
Logic

IP/VRF Assign
L2 Service Create
L3 VPN Service Create
SD-WAN Create
TE Tunneling
BGP Config
SW Upgrade
…

…

Configuration Templates

Service/Network Design &
Engineering Rules

Policies

VNFs
PNFs

OpenFlow

Assigned Resources Inventory:
Service* Topology &

VNF/PNF State

Operational Tree/
Config Tree

(Service Model)

CI-2

CI-4
CI-5

CI-3CI-1

CI-6

CI-7

*Not E2E service view. The “Service” view in the
SDN Controller is limited its scope of control

CE-6

CE-4

Configuration
Design Tool UI**

Run time
catalog

CE-1

CE-6 not needed***

30

 ����������������	���	������� �����

�	�
��

		�
)��"�C�C"�D

	A&ECA$$�C���CDA&�D�
�I�%($�D
 �C��E����CA%�		�
)�

�
��	���CDA&�

NB API 	A&ECA$$�C���(D

	A&ECA$�&F&�E"A&D

-
��
��C-"���	A&ECA$

�"�C�C0

��&�	A&�" FC��

��EHAC#�	A&�"

�-��&F&�E"A&�	!�"&

�DD" &

SB
API -E!�C����(E�CD-�����(D

K��C-"��D���(D��E�A&��3�&
…

…

�A�"$"E0��&�	A&ECA$$�C���CDA&�
NB API 	A&ECA$$�C���(D

	A&�" FC�����	��&F&�E"A&D

��C-"����A "�
�& "&�

�"�C�C0

SB
API

�&D"�$�

K��C-"��D���(D
��E�A&��3�&

/��F"$�
�EA(��E�CE

�F�"E

��$E!	#
���$�

��$

-E!�C��& "&�D

�C� ��&�����
�C� ��CE0��&	

��&�	A&�" FC��
�-��&F&�E"A&�	!�"&

-�����(D
-E!�C����(E�CD…

…
…

�"C�$"&���&�	A&ECA$$�C���CDA&�
NB API 	A&ECA$$�C���(D

	A&�" FC�����	��&F&�E"A&D

��C-"����A "�
�& "&�

�"�C�C0

SB
API

�&D"�$�

K��C-"��D���(D
��E�A&��3�&

/��F"$�
�EA(��E�CE

�F�"E

��$E!	#
���$�

��$

-E!�C��& "&�D

�C� ��&�����
�C� ��CE0��&	

��&�	A&�" FC��
�-��&F&�E"A&�	!�"&

-�����(D
-E!�C����(E�CD…

…
…

