N-Level Run Time Nesting? Let The Service Providers Decide

Service_W Modeling Example 1

Service

il
Orchestration

\ Resource

Orchestration —

Service_W:

topology_template:
node_templates:

VNF W sesessss __de===> | VNF_W

Allot_ted_Resou rce_ W =

—

——

\
1

\‘> Allotted_Resource_ W
Provided by: Service_X

i " Service
" Orchestration —

Each Service/Resource “reuse unit”
results in a separate thread of
orchestration. This would allow for
“on demand” spin up of “lower level”
(Infrastructure) Service instances.

1

1

i

|| | Service_X:
| %

\

AL
Resource T 7

Orchestration ﬁ:
3 topology_template: Boun
ot node_templates: mns
00(\}},,/ \ e plete === | VNF_X of conce
= gion
e((\r,’/ AN Allotted_Resource X o===, Gepd@
(% fost
‘S(JO(\ ‘\9 Allotted_Resource_X T
,009/ Provided by: Service Z | —
o o B Service T ¢
ot [L
e? P Orchestration —__ \
|| Resource
,,,,,, -] Orchestration ;
i ‘\ Service Z:
~ .
~ topology_template: .
— VNF_Z]
A node_templates: ”- >
UNF 7] ===
VNF_Zk "“‘__> VNF_zZk
CITHELINUX FOUNDATION

Could be extended to allow
multiple “higher level Services”
to each have a “share” of a
“lower level Service’s” instance

dary

)

NMInnn

A&AIl Instance Representation of Service W Example 1

VNF_W VNF Instance
Instance “1”

A
|

Service_W Svc Instance]
Instance “1”

AllottedResource_W AR Instance
Instance “1”

[\

]

Service_X Svc Instance

|

Service_W'’s Allotted Resource

In.

VNF_X VNF Instance

stance “2”

J

[

provided by Service_X

Instance “2”

|

Allotte

dResource_X AR Instance
Instance “2”

]

Service_X’s Allotted Resource
provided by Service_Z

N\

Service
Orchestration

Service T

Orchestration \

Service_W:
topology_template:
node_templates:
VNF_W
Allotted_Resource_W =

Resource

Orchestration ~—

I| \ Resource T
1 Service_X: Orchestration —
|‘ topology_template:
\ node_templates: e T
L VUNF_X wwesesewe= emm=">
~A\ Allotted_Resource_X -‘---\“
A

~

:

~

Service_Z Svc Instance
Instance “3”

[

_ [VNF_zj VNF Instance
Instance “3”

))
)

‘\
~

VNF_Zk VNF Instance
Instance “3”

In this example, the entirety of VNF_W is dedicated
to the Service_W Service Instance, but only a portion
(represented in A&Al as AllottedResource_W) of the
“lower level” Service_X Service Instance is dedicated

to the Service_W Service Instance. This pattern
g [l ResorceR repeats itself for the other Service Instances shown.
Provided by: Service_Z

' Service T

1 Orchestration —

1 \ e

1 Resource ——

l‘ Orchestration —

\\ Service Z:

~ topology_template: - T
A node_templates: r~ >

CITHELINUX FOUNDATION

VNE_Z] ==

VNF_Zk ==

-’

"~

——

MR

SDC Model View

VNF_W VNF Resource:

Service_W Service: VFC_W (VFC)
topology_template:
node_templates:

VNF_W (VNF): Allotted_Resource_W AllottedResource:
Allotted_Resource_W (AllotRes): Providing_Service:
Service_X
=
If---~~~~ U
~~.'--..,_"_I
N VNF_X VNF Resource:
, o VFC_X (VFC)
Service_X Service:
topology_template:
node_templates: Allotted_Resource_X AllottedResource:
VNF_X (VNF): idi .
Allotted_Resource_X (AllotRes): Provi |r'.ng_SerV|ce.
Service_7Z
=
="
T)
N
x VNF_Zj VNF Resource:
[VFC_Zj (VFC)
Service_Z Service:
topology_template: VNF_Zk VNF Resource:
node_templates: VFC_Zk (VFC)

VNF_Zj (VNF):
VNF_Zk (VNF):

CITHELINUXFOUNDATION

NMInnn

“VNF Chaining” Data Flow for Service W Example 1

Service_X’s Allotted Resource
provided by Service_Z
- VNF_X N

S

Service_W’s AIIotted Resource
provided by Service_X

CITHELINUXFOUNDATION

NMInnn

Modeling Network Latency Homing Constraints

for Allotted Resources
If Service_W is sensitive to network

Service_X's Allotted Resource

latency beween VNF_W and the VNF_X _ provided by Service_Z

that hosts AR_W, then the homing @
algorithm will need to select only VNF_X ><:A@ o :-‘“F:g -
instances that meet the Service. W 7~ i
constraint. However, we don’t want to Service_W's Allotted Resource =.

write any homing (or any other) policies praviced ysenice X A(Ai@

for Service_W in terms of the internal
structure of the underlying “lower

order” Service type. ‘.

We can instead write the network latency constraint in terms of two policies, one a Service_W policy and one a
Service_X policy.

Specifically, we will define the concept of an “SLA” that the lower order service will advertise. We will give the “higher
order” Service a policy as to which SLA it requires from the “lower order” Service type. We will have the “lower order”
Service type have a policy which indicates from which VNF the SLA is measured (mirroring the data path)

CITHELINUXFOUNDATION

m RspTime<65ms from VNF_W
LI

Service_W Service:
topology_template:
node_templates:
VNF_W (VNF):
Allotted_Resource_W (AR):

Service_X Service:
topology_template:

Service_W Constraint: node_templates:

Network Latency<20ms VNF_X (VNF):

Allotted_Resource_X (AR):

Service_Z Constraint:

Affinity: Must be within geo-political
. ... provincial/state boundary
4_.--‘--"‘

SQ_Q___M_gdellng Tool for Service Designer

[LLLTT Y] tEEEERTEaRaa,,,
",
a,

!
VNF_W VNF Resource:

VFC W (VFC)
Application Latency 5ms

Leaneer S€1Vice_ W Constraint:
Network Latency<30ms

Allotted_Resource_W AR: o

Providing_Service:
Service_X

Use SLA X1
—

9/
SLAXIr~maee____J7

Key

“Lower Level Service Type” that
can be instantiated in real time
on an “on demand” basis

W,

Service_Z Constraint:
Aff|n|ty Co-Located

K

VNF_Zj VNF Resource:
VFC_Zj (VFC)

e PN
& / \\
VNF_X VINF Resource: Service_X Constralnt II \
_ VFC X (VFC) J Afflnljcy. Co-Located ,I X
Application Latency 5ms |54 II
Allotted_Resource_X AR: I/ Service_Z lszl,-v,'ce;
Providing_Service: K topology_template:
Service_Z UseSLAZ1 [J node_templates:
— | / VNF_Zj (VNF):
J VNF_Zk (VNF):
SLA71 \ SLA 71 Capabilities:
ResponseTime<30ms at VNF_zj, if “~-—'SI'A 22 Gl 2
Svcinstance created with configuration “P” 4
(not counting network latency) o
SLAZ2
ResponseTime<20ms at VNF_Zj, if o
Svcinstance created with configuration “Q” ,"’
(not counting network latency) *

¥ JITITTITIEELLE

VNF_Zk VNF Resource:
VFC_Zk (VFC)
Requires Contrai

NMInnn

SDC Modeling
Tool for Service

Designer

Application | Network |Cumulative [Advertised
Latency Latency Latency SLA
VNF_Zk
VNF_Zj
VNF_Zk <-> VNF_Zj 0
Svc Z Unknown 20
VNF_X 5
VNF_X<->Svc_Z 0
Svc_ X 25 30
VNF_W 5
VNF_W<->Svc_X 30
Sve_ W 65 65

CITHELINUXFOUNDATION

SLAWL

provincial/state boundary

o s
(" RepTime<sSmsfrom VNF_W i . .
Fs VNF_W VNF Resource: | , ... Service_W Constraint:
§ = VFC W (VFC) € etwork Latency<30ms
i Service_W Service: L Application Latency 5ms o
: topology_template:
noiIIeN_;eanﬁl\altl:.derl.‘ Allotted_ResourceW AR: .
i Allotted_Resource_W (AR): Providing_Service:
i Service_X Use SLA X1
SLAXL L
% RspTime<30msfromVNF_X L errren,.
i b4 SLAXI=~mee . P
1 el P N Y
% L[VNF_X VNF Resource: Service_X Constraint: / \
Service_X Service: VFC_X (VFC) Affinity: Co-Located / x
o \-N ey topology_template: pplication Latency 5ms [’I { |
ervice_W Constraint: . J,
Network Latency<20ms nc:\l{epg:e: R:’::E]S Allotted_Resource_X AR: Fi Service_Z Service:
= : 3 Providing_Service: F topology_template:
pllosizdiReseicel GAR); Service_Y Use SLAZ1 ,’ node_templates:
i M | VNF_Zj (VNF):
i Vi VNF_Zk (VNF):
i \ SLA Z1 Capabilities:
; s zc . ZLAEL S Capability_z
14 L Siees f}n§tramt. . ResponseTime<30ms atVNF_Zj, if S SLAZ2 -
Affinity: Must be within geo-political Svclnstance created with configuration “P* P
st g

(ot counting network latency)
SLA Z2

ResponseTime<20ms at VNF_Zj, if

Svelnstance created with configuration “Q”
(notcountingnetwork lateney) .

Service_Z Cc;ns't'raint'
Affinity: Co-Located

¥
VNF_Zj VNF Resource: | i
VFC_Zj (VFC) H
v

VNF_Zk VNF Resource:
VFC_Zk (VFC)
———Requires Contrail—

Application | Network [Cumulative | Advertised
Latency Latency Latency SLA

SDC Homing Policy Calculator _=_ 0

Sve_Z Unknown 20
VNF_X 5
VNF_X<->Svc_Z 0
Sve_X 25
VNF_W 5
e : VNF_W<->Sve_X 30
4l N Sve_W 65 65
VNF_.W
R 2
o Service_W Constraint:
Service_W Constraint: Network Latency<30ms VNF Zk
Network Latency<20ms < Vp——. — =
- CAR WU VNF_X < Instance

Q

Instance

Q
Q
0
»
0
0
»
u
u
»
-
»

Service_W Policy:
Require SLA X1 from the
hosted Service_X instance

Service_Z Policy:
SLA Z1 is provided from
entry point VNF_Zj

S Instance

Service_X Policy:
5 SLA X1 is provided from
:',l entry point VNF_X

Service Y Policy:
Require SLA Z1 from the

hosted Service_Z instance

CITHELINUXFOUNDATION

NMInnn

Decomposition and Homing Approach

Note that, from a Service_W perspective, homing involves finding a cloud instance suitable for a new VNF_W instance such that the
constraint:

Latency: [geographic point on map] <-> VNF_W < 20 ms
(where the geographic point is the location of the residence), and such that the “Network Latency” constraint of “VNF_W <-> AR_W
< 30ms” is met. This involves knowing that the Providing Service for AR_W is Service_X. This processing would require
decomposition to have created the Service_W rows in the decomposition example. If an appropriate cloud instance and Service_X
service instance is found, then homing is complete.

However, if no such Service_X instance exists (i.e., OOF Service_X homing thread returns an exception), homing can determine that a
new one should be created “on demand.” In such a case, we want to take a separation of concerns approach whereby the
Service_W homing thread can delegate down to a Service_X homing thread for further solutioning.

Homing of a new Service_X instance would similarly require that decomposition of Service_X had been performed (i.e., the Service_X
rows oof the table). One goal of this homing is to find a cloud instance suitable for a new VNF_X instance such that the Service_W
constraint that VNF_W <-> AR_W < 30ms is met. However, we don’t want to violate separation of concerns between the Service_ W
and the Service_X processing, so we will have the Service_W homing thread pass to the Service_X homing thread a constraint that is
written in terms that Service_X can understand:

Latency: [geographic point on map] <-> Service_X < 30 ms
(where the geographic point is a “proposed” location of the VNF_W yet to be created). Because the optimal location of VNF_W has
not yet been determined, this will likely require that the Service_W homing thread spawns multiple Service_X homing thread to solve
the overall homing problem. Step by step processing can be seen on the following slides.

CITHELINUXFOUNDATION

N

\\\ \\::\:

h

Homing Example Flow

VNFW

§o-- .,
SO sends OOF a Service W e Conins SZ!JJS?E‘&&?Z‘QQ”;; S
homing request, providing e ——" %:“'i‘zwﬂ:s'j:;’c‘e <& Llimance
as an input constraint the A ’__/ S .E Network Latency-oms e 7 bty
geographic location of the | howeaSonn X nsance e Laten"c'y_jns i s e
residence. OOF Service_W - A X Instance
homing will comprise homing smmstzpdtgﬁ
for VNF_W and AR_W. OOF i :
homing for VNF_W will find b Fecint e

eligible VNF_W cloud

instances that meet the 20ms latency constraint with the residence. OOF homing for AR_W will, for
each eligible VNF_W cloud instance, want to find the set of Service_X instances to provide that AR_W
functionality that meet the 30ms latency constraint with that cloud instance.

CITHELINUXFOUNDATION

NMInnn

Homing Example Flow (Cont’d)

However, we want to maintain

Service_W (.Zonstra\'nt:

a Sepa rate Of concerns Service_W Coﬁ;traint: Network Latencv<3§)'m5 VNF_zk
. Networlf:LatencyQOms 2?-5:\’-\}) I ::QR_.;(.\ jaeeaar
approach, and the Service_ W F fideoicont T
H] §

H ’ § P olicy: o ¥ Network Latency=0ms " o
proceSSI ng- th read Shou-ld n t Requiri SLA XI\,:'oPmlthye ’__/ Network Laten..c'y=0m5 == ! =T, Zl?:;\:'locsazet:ill'loc:;
kn ow the Im plementatlon Of hosted Service_X instance n VNF_Z] entry point VNF_Zj

. H ':“r"' XS =
AR_W such that it can measure e x ot Seamndiietance
latency to it. (This can be best | W Rttty
seen in the Service_Z example ‘ SO Y PONCY: e
tO the right.) Thus’ We Wi” hosted Service_Z instance

have the Service W OOF

homing request thread delegate selection of the optimal Service_X instance to a subtending Service_X OOF
thread. Thus, OOF can be seen as (logically) calling itself in parallel with multiple Service_X homing requests.
Each such request can be seen as providing as input constraints the geographic location of the associated
eligible VNF_W cloud instance and the SLA needed, in this case SLA X1.

CITHELINUXFOUNDATION

Homing Example Flow (Cont’d)

Service_X homing knows that

Service_W éonstrafnt:

SLA X1 is measured from an S:Iﬁif;ﬁé‘lﬁi?&“é; Network e) @

entry point on VNF_X. Thus et e

Service_X homing is comprised - S s B ; Networzk Latency=0ms sence 2 ol
of looking for the optimal {_hosted Service X nstance " s entry point VNF_Z
Service_X instance whose e x vty K ainstance

VNF_X instance is within 30ms N | ey pomevex

of the input geographic . serveevpoley:

location. If at least one such nosted service z nstance

Service X instance is found,
homing is done (except for optimization).

If no such Service_ X instance can be found, then homing will determine whether the Service_X service
definition allows for dynamic instantiation of new Service X instances. In this case we will assume “yes”, so
OOF would determine whether a new Service X could be instantiated such that all constraints can be met.

CITHELINUXFOUNDATION

NMInnn

Homing Example Flow (Cont’d)

OOF Service_X homing will TR,
comprise homing for VNF_X and scicew cosraine eSSt

. . Network.Latency<20ms E
AR_X. OOF homing for VNF_X will

find eligible VNF_X cloud instances | A
Require SLA X1 from the
that meet the 30ms |atency hosted Service_X instance

constraint with the input \ —
4 ervice_X Policy:
geographic location. OOF homing ,, e el

entry point VNF_X

fOr AR_X Wl”, fOr eaCh EIlglbIe Service Y Policy:
Require SLA Z1 from the

VNF_X cloud instance, want to find hosted Service_Z instance
the set of Service_Z instances to

provide that AR_X functionality that meet the Oms latency constraint with that cloud instance. The pattern
recurs, however, that Service_X has no business understanding whether the Oms latency constraint should
be measured from VNF_Zj or VNF_Zk, or even in fact that there exists a VNF_Zj or VNF_Zk. In order to
maintain separation of concerns, homing of AR_X will be delegated to a subtending request thread
delegate selection of the optimal Service_Z instance to a subtending Service_Z OOF thread.

VNF_Zk
—

£7AR_X_> Instance
e

Instance

Net: :kL t =0
€ wor: atency=ums Service_Z Policy:

SLA Z1is provided from
entry point VNF_Zj

zzss====

Network Léteqcy=0ms

| VNF_Zj
P .
&R X > Instance

o

CITHELINUXFOUNDATION

Homing Example Flow (Cont’d)

Service_Z homing will thus e

search for eligible Service_Z - Sﬁ!ﬁifa‘ﬁi?i?ﬁi&“;’s
instances such that the Oms i A SHET e X
constraint is measured from ; service W Polcy

the input geographical location o S

VNF_zk
> Instance

Instance

l\‘
I
-'I;
@

Net :kL tency=0
€ wor: atency=ums Service_Z Policy:

SLA Z1is provided from
entry point VNF_Zj

=z=EsEE

Network Léten.cy=0m5

<
=
S |-
o

(in this case the potential cloud ._ "84 303 Instance
. . A Service_X Policy:
instance location for VNF_X) to Y SLAXLisprovided from
. .. - ki entry point VNF_X
an avallable VNF_ZJ InStanCE ‘ Service Y Policy:
. . equire from the
(the point from which the hased Service 7 instance.

Service_Z SLA is measured.

If no such Service_Z instance can be found, then homing will determine whether the Service _Z service
definition allows for dynamic instantiation of new Service_Z instances. In this case we will assume “no”, so
the OOF Service_Z homing thread would return an exception to the calling Service_X homing thread. Such an
exception would likely not result in failure of the entire Service_ W homing, but rather simply result in pruning
a branch of the overall potential homing solution tree.

CITHELINUXFOUNDATION

Decomposition Structure for Service_W Example 1

Service_ W W1: RspTime 65ms end to end Ntw Latency: VNF_W <-> AR_W < 30ms

Service_ W VNF_W Ntw Latency: Residence <-> VNF_W< 20ms

Service_ W AR_W Service_X Require SLA X1 from Service_X instance)

Service_X X1: RspTime 30ms end to end Affinity: VNF_X, AR_X Co-Located

~

Service_X VNF_X

Service_X AR_X Service_Z Require SLA Y1 from Service_Z instance 2
4

)
O
>
| -
)
n
[&]
>
)
(%]
\L -
3 s
o
o 3 | Service_z Z1: <30ms with config “Q” | Affinity: VNF_Zj, VNF_Zk Co-Located
o 5 Z2: <20ms with config “P”
T
EI 3 Service_Z VNF_Zj
m o
< Z| Service_Z VNF_Zk
<<
- , 7
CITHELINUX FOUNDATION —

MR

Homing Solution Example for Service_W Example 1

Service_ W VNF_W Cloud_Region_1
Service_W Allotted_Resource_W Service_X : Instantiation_Needed
()
) Service_X VNF_X Cloud_Region_2
—
=}
)
S Service_X Allotted_Resource_X Service_Z Service Z Instance Id
= |
)
£ o
£ E
: - [serviceType [ResourceType [Alowed Resourceprovidersenvice [Homingolution |
= ® , , ,
’z| g Service_Z VNF_Zj As Exists
o
< i Service_Z VNF_Zk As Exists
n:l
<
.

CITHELINUXFOUNDATION

Generic Service Level Flow for Service_ W Example 1

Generic Service Instantiation Flow (Recursive)

(o] Decomposition
(Service Level): Orchestration BB SMNIRO
Client I Catalogue I GensSvc: Service_W Senvice_W+ Homing BB I Conductor | | A&AI I

T

|

|| Mote that this diagram must be updated to incorporate

1| the correct OMNAP internal APl names. For now only intuitive
> | names have been used for the sake of readability.

|

|

|

I

|

|

[N
Create Genbrlc Service Instance
(Type= Service W, Cloud_Config_Data)

Get SvcTemplate
[Type=Service_W)

|

|

|

I

|

! ! Assign Service Instance
| | Inventory Object UUID ()
|
I
U

|
|
|
|
|
|
|
|
|
|
|
Ack (UUID=Service_w UUID) i
|

-

I
!
I
I
I
]
]
I
!
I
I
I
I
I
I
!
I
I
i i
o i i |
| | | Create Service Instance Inventory Object (Type:Semice W,JUID) N
I I r Eal
I I L L
! ! Decomposition (See details on “Decnmpusltmn Details" sequence diagram) / !
i i i || so Generic Senvice Level flow calls the "Decomposition Building Block",
1 1 1 || "Decompose" consists of parsing the TOSCA Service Template content
i i i _ : 1| to determine the complete set of Resource Node Types, which we will
\ \ : Decompuse (Type=Service W) > | assumne to be as shown in the PPT slide "Decomposition Structure for
i i i 1| Prior Example". Also included (not shown] is determining the instantiation
X X X || sequence between the template Node Types based on the template content.
: : | | i i i
| | ! | ! n - q q T
i i I i 1| The service_W workflow calls the Homing BB, passing in
\ \ \ | || the pointer to the Decomposition structure, The Homing
! ! ! Homing ! 1| Building Block pulls the Decompaosition structure and passes
1 1 ; ; » | and p as a set of Resource Demand Types to be
' ' ' I ' hormed, which we will assume to be as shown in the PPT
X X X | | slide "Homing Solution Example Structure for Prior Example".
I I I | I
e ' ' I I I
1 1 Instantiation (See details on "Instantiation Details" sequence dlagram)
nap_UC_GenerlC_Seerce_ReCU rSIVe_pl.html i i Service_W workflow uses the Service_w model to instantiate Dy i
' ' Allotted_Resource_W (AR_W) and WNF_W,. Because of the nested '
I I nature of Service_W in Example 1, there is much recursion invelved. I
1 1 See details on other sequence diagram. 1
i i '
_ Success | | | \ \ \
! !

' ! ! ! ! ——
El THE LI N ux FOUNDAT'ON Client l Catalogue l ={e] Decomposition Homing BB l SNIRO M —

(Service Level): Orchestration BB Conductor N
Gensvc: Service_W Senvice_W+ \\\\\\\

Decomposition Detail Flow for Prior Example

Decompose (Type=Service W) |
ecompose (ype=sernice W,

Capability Service type that wil meet the AR'S requirement type, Assume this is not based on heming policies or any o
assumes that decomposition of a Service doesn't depend on which “Capability* it is providing to a “hi

envice level decomposition will just determine the Resource types needed to fulfll the Service msranmmn SR R S LA o I
ization, but rather is deterministic for the given AR type.
igher order” e T o e e S e e o ::agahmty)

Details Flow (
S0 Decomposition Decomposition Decomposition Decomposition Decomposition Decomposition Decomposition
(Service Level): Orchestration BB Orchestration BB Orchestration BB Orchestration BB Orchestration BB Orchestration BB Orchestration BB
GenSvc: Service_ W GenSvc: Senice W ‘GenAR: AllotRsc_W GenSvc: Service_X GenAR: AllotRsc_X GenSve: Senvice Y GenAR: AllotRsc_Y GenSve: Service Z Decumuoserl
i General patter

Decompose (Type=Service W) |

Capture WNF_W row in PFT)| Struct (YNF_W, AR W)

| Decompose (Type

nap_uc_Generic_Service_Decomp_pl.html

lotRsc_Win
RO PRSI T

Decompose (Type=AllotRsc_W)

Struct (AR_W -> Service_X)

The Service_X Struct retumned comprises the 6th
alumn ("Capab Sve Struct™) of the AR_W PPT row.

CITHELINUXFOUNDATION

Success (Service WStruet) |
<RI L R

Capture AR_W row in PPT. Success (AllotRse_W Struct)
3 ‘

Decompose (Type=S5ervice X}
e

Decompose Service X/

| Decompose (Type=Service_X)

|
Capture VNF_X row in PPTL),|_ Struct (VNF_X, AR)

| Decompase (Type:
Rt el lomal i S

llotAse_X)

Decompose (Type=AllotRsc_X)

Struct (AR X -> Service V)

| Decompose (Type=Service_Y)
D >

Decompose Service Y __J

Decompose (Type=Service)

Capture VNF_Y row in PPT | Struct [VNF_Y, AR)

i
| Dec:

pose (Type=AllotRse
L Decompose (Type=AllatRse V),

A1)

Decompose (Type=AllotRsc_Y)

Struct (AR_Y -> Service Z) |

| Decampose (Type=Service 7)

Decompose Service Z __/

| Decompose (Type=Service_Z)

| Capture VNF Zj and
! Capture VNF_Zjand). _ Struct (VNF._2), VNF ZK)

Success (Service_Z Struct)

The Service_Z Struct retumed comprises the 6th)| Consalidate AR Y info
column ("Capa Swc Struct”} of the AR Y PPT row

The Service_Y Struct retumed comprises the Bth), Consolidate AR_X info
column (“Capab Swc SEruct”) of the AR_X PPT row.

-

Success (Service X Struct)
]

B|3 Consalidate AR_Winfa

Success (AllotRsc_X Struct) !
————————————

Capture AR_Y rowin PPT, 1 |

Success (Service ¥ Struct)
I Suceess Sane ¥Stuch)

Success [AllotRsc ¥ Struct) |

S0 Decomposition
(Service Level): Orchestration BB
GenSwe: Senice_W GenSuc: Senvice_W

Dec
Orchastration BR

GenAR: AllotRsc_W

D |
Orchestration B8
GenSwe: Service_X

Decomposition
Orchestration BB
GenAR: AllotRsc_X

Decomposition
Orchestration BB
GenSue: Seniice_Y

Decomposition Decomposition Decomposer I \
Orchestration BB Orchestration BB

GenAR: AllotRsc_Y Gensve: Service_Z
\\\\\\\\\\\\\\\\\

igh Lovel Allotted Re:

Instantiation for Example

) S0 el = SoEmtnal) S0 Exsting] o SoBstnal
sevielever: [| esource tovet sevceteve: | | resource e senscelever: | | esoure Lot senvtmen: || nobce (e
et Semee v | |cora Aiotscn | | cersi:semo.x | | cerah se20 | | o Sewee.y | |cenaAisen | | sonse: somice 2 | | Gonak oo 2 | [2e]) [sow) [Aowcz) [[rowcv)
JISE——] ;
= ;
wuio)
| Get Service W L
Homeng Solition [The Servce.y X N
—
Wi 7

The Senvc
Homing Saoton o2 e

e (ipe=

nstantiation Detail Flow .

Wi passes the AL Yo othe h|

Resource WUUD)

Get AR Woming St [A N

L] : n
! T o of i St it e rs 0t s St g o
Souton s ncamoite | T e e srucions o crete & newtance o Senice X
)
ey ; ; ;
Gt conr
— Senvice Instance AR W flow passe sm-»_vm msmxtumovme Homing Solution 0 e e e Xlevel vorkfow)
Tpaecupatis X | I o s o A om0 s ompion e 1o SAe X bt

CHomingsouriors)

Assign Senvce UID | 1 H
e 4

vy
Get Service X - L
ihon [Te Sene Y Y

< I T

%3 Fesourcs o :
Creae Genenc

Servce o paseesthe AR Xowatthe
esume ot Servee Xiodel e
) e e e oo e et
| Asotted_Rasource_ X must be instaniiated fist Alotted_Resource X, || included is the multi-nested AR_X Homir

Cource UG

view detail. © ;

/ o [T ARX Towony cores sbout A kY

Scale PPT to 300% to =
ZJ

- R
Solon s mcomplese | T 20200 T e Sum s oo e e e S ekt i
nce of Service V.
Create Generic H
o, T R ST o e T
e N - A)
eRned
— :
L i
= v
i eusoien : :
i Citmoe Socton [e - v f s i Sokn.
) / Assume as per Service Y Model the AR Resource ¥ Must be. 7
| — Creste Germri. = :
T TISLT
- e e S [e o
g T i i e e h|

Assign Asotted
Resaurce LD

Create Atotted Resource nentory nstance.
(Type-Asatted Resorce WUO)

Note recursion in the process

cer
]

Potential insertion points
ARY Homing SOhAON [e AR Y low oy caes about the ARY owof the Homing Sowten)

i for Cloudify? Do we want
i Sarve i .
\Qk\ =1 T to do that as part of this

: : POC? Or just stick with
—— = = \’ Camunda?

Congure Genert Aloted fesource (.Y UUD <Pputs>)

ext. instantar

Vickputs=) :
Success (<servce ¥ : i H ;
- H

\ Scstancetin) ; :
= iy =ea E X D
pram)
e toming, o [Service_Y LU s populated in the Homing Sa\mnj i
Solution s Compete. | column o the AR X Homing Solution structure. H
| =1

o0 Generc Aotted Resource Netwrk Resources (4% X UUD)

riw

onap_uc_Generic_Resource_VNF_Recursive.html D TR R i =)

Success (<Senice X
instancelos)

Ve Senvee X Srcmtancetd | A% Y
)

Servce XUUD s po
ol o the AR W Homing Soiton trucure.

1 ”
Assion Generc Aorted Resouce Network Resources (AR WUUID)
I: Create Generc Copabity mathrce (Type=Capobity o1 ¢ |

Confqure Gener Aloted Refource (AR W UUID, <inguts>)

THELINUX FOUNDATION e =

e oot YW Dl et o e st cscaien Frclons e i VI s o
INAGAL caling SDNCTo 0btan sslgnmens. creatg the VNI v Mull- VB, and Sctnatngiconfurng the VNF

Woputs>) 1

50 [Exstin]
(Resource Lever
GenaR: AsotRsc X)

50 (Existing]
(Resource Leve
GenAR: AloRsc V)

50 Exsting)
(Resource Leve:

so
(Servie Leve:
GenAR: AlotRscY)

S0
(service Leve):
Gensuc: Servce Y

Genswc: Senice W

S0
(senice Level
Gensic: Senice.Z

sotoaing) | [[sonc] [wocz] [mocy]
(senvice Leve) (Resource Levet
Gensuc: Senice X GenAR: Alotksc 2)

Backup Slides

CITHELINUXFOUNDATION

NMInnn

Allotted Resources — VPE/VRF Example

Every Resource can be exposed as a Service. The ONAP model supports this today through
the “Allotted Resource” construct. This concept of “Allotted Resource” does not seem to
appear in the ETSI model. Perhaps this is due to ETSI seemingly covering only instantiation
of Infrastructure Services, and not instantiation of end Customer Services.

An instantiation request for a L3VPN_Cust Service would
result in a VRF being instantiated. That VRF would be
“homed” to an existing VPE_Infra Service instance (i.e., the

VPE VNF instance on which this VRF will be configured).

“Higher Level”
Service

In this case, the vVPE VNF has been packaged
as an Infrastructure Service. An instantiation
request for this vPE_Infra Service would
result in a new vPE VNF being instantiated.

The VPE_Infra Service exposes a capability to
provide “VRFs” (a “VRF_Capability”). The
L3VPN_Cust Service consumes this capability
through its “VRF Allotted Resource” construct.

L3VPN_Cust Service:
topology_template:
node_templates:
VRF =====a

\
\ VRF Allotted Resource
"3 requirement: VRF_Capability “Lower Level”
R Service
\ _-==> | VPE VNF
‘\\ VPE_Infra Service: II'
AN topology_template: A
[L3VPN_ICust Servilceﬂlnstance] \\s node_templates: /I f,-) vPeNet Network
nstance /} \\~ . VPE UNF m— e e - I,
B ~"“~~~-___ vPeNet_Network ====F==*
[VRF Allotted Resource Instance Ty capability: VRF_Capability
Instance “B”
~~_| VPE_Infra Service Instance
[Instance “X”]‘ ~~~~~~ { VPE VNF Instance]
- Instance “Y”
\\ In A&AI an actual instance object represents the Allotted
CITHELINUX FOUNDATION [vPeNet T Instance] Resource separate and distinct from the Services involved.
Instance “2” N
A aaa™

E2E Service

Transport Service
S O O
I

sol905

ONAP

/ \
sol005 sol005
L \

ONAP Cloud Manager

CITHELINUXFOUNDATION

NMInnn

Model-Driven Orchestration 0o

“Generic” model-driven Service flow (limited existing) ‘ model-driven flow. There currently exist such
flows for “VNF” and “Network” Resource Types.

N
Service o T Resource
. i Note that network function virtualization
Orchestration _’L_, Orchestration I Cloud Resource — E E should enable Service Providers to trigger
. — deployment of an instance of a “Lower
-->| PNF Orchestration i Level” Infrastructure Service using a
S ice X ,” ' ' ' “demand based instantiation” approach.
ervice A: 4
14
topology_template: K
_ : ¢ _==>| Network .===>| VF Module]
node_templates: /1 /, e Recursion
PNF —=mmmea——- - S J/
Network ======- pm———— s
L d
UNF e ______——"'"'> VNF | ===———==—— -
Allotted Resource F====== -~ : LI 11 N N _—
Y Service - Resource ——
“~=>| Allotted Resource Orchestration — Orchestration —{ |
requirement: A ‘ I
\ /’___> PNF
An Allotted Resource can be homed to an “ Service Y: 4
existing “underlying” Service Instance, or \\ topology_template: ,I
homing could determine that a new Service \ Zo werlae 'I ’__.> Network
Instance is needed. This would result in a 2" \\\ Tk P ' g /’ 'Y Y
level of Service Orchestration. ﬂ S eeel PNF —==—=—=—- i
E— -> Network ======- e
Service Y is being treated VNE ____..---) VNF
as a “Resource” fromthe | | VNI mmEmmEmmEmsss ==
perspective of Service X. Allotted Resource T====== ~~,
capability: A AN ;]
C1THE LINUX FOUNDATION ~~>| Allotted Resource |

NMInnn

N-Level Run Time Nesting? Let The Service Providers Decide

Service_W Modeling Example 2

For the case whereby a “higher level Service”
consumes the entirety of a “lower level Service’s”
instance, SDC should support the Design Time
ability to construct an “upper” Service Definition
from other Services definitions via substitution
mapping (a.k.a., “Compile Time Nesting”)

Serwlce s late: Service X: Service Y:
efpe ey Il el topology_template: ') -
node_templates: e topology_template: Service Z:
VNF_W VNF X node_templates: topology_template:
Service_X Service Y VNF_Y node_templates:
- Service_Z VNF_Zj
VNF_Zk
. . Substitution Mapping
Design Time
Distribution Time & Run Time , Seree M:E_?\’ Resource PP A&AIl Instance Representation of
e RO Service_W Modeling Example 2
: -=D> | VNF_W -_{ VNF_W VNF Instance]
The “lower level Services” Service_W: /’ [Service_W Sve Instance] 3 Instance “1
would not be visible at topology_template: ,’ Instance 1" -\\::\{ VNF_X VNF Instance]
Distribution Time. Hence a node_template: /J ,“—-> VNF_X \ \\\\ Instance 2"
“flattening” of the run-time VNF_W ____—*',/ k0 \[VNF_Y VNF Instance]
orchestration would result. VNE X =====F" —===> | UNF_Y by Instance “3”
= Va —_ . LY
VNF Y ===== - The entirety of these VNFs, X \\{ VNF_Zj VNF Instance]
I — o not just a portion thereof, Y Instance “4”
xm :z_?k ----> VNF_ZJ LR e e D) 712 “ VNF_Zk VNF Instance
CITHELINUX FOUNDAT|ON =R =TT S S Service_W Service Instance. { “Instance “4”]

\~___>

Ay

