
1

N-Level Run Time Nesting? Let The Service Providers Decide

Service_W Modeling Example 1

Could be extended to allow

multiple “higher level Services”

to each have a “share” of a

“lower level Service’s” instance

Each Service/Resource “reuse unit”

results in a separate thread of

orchestration. This would allow for

“on demand” spin up of “lower level”

(Infrastructure) Service instances.

Service Z:

topology_template:

node_templates:

VNF_Zj

VNF_Zk

capability: Z

VNF_Zj

VNF_Zk

Provided by: Service_X

Provided by: Service_Z

A&AI Instance Representation of Service_W Example 1

In this example, the entirety of VNF_W is dedicated

to the Service_W Service Instance, but only a portion

(represented in A&AI as AllottedResource_W) of the

“lower level” Service_X Service Instance is dedicated

to the Service_W Service Instance. This pattern

repeats itself for the other Service Instances shown.

Service_W’s Allotted Resource

provided by Service_X

Service_W Svc Instance

Instance “1”
AllottedResource_W AR Instance

Instance “1”

AllottedResource_X AR Instance

Instance “2”

Service_X Svc Instance

Instance “2”

Service_Z Svc Instance

Instance “3”

VNF_W VNF Instance

Instance “1”

VNF_X VNF Instance

Instance “2”

VNF_Zj VNF Instance

Instance “3”

VNF_Zk VNF Instance

Instance “3”

Service_X’s Allotted Resource

provided by Service_Z

Provided by: Service_X

Provided by: Service_Z

3

Service_W Service:

topology_template:

node_templates:

VNF_W (VNF):

Allotted_Resource_W (AllotRes):

SDC Model View

VNF_W VNF Resource:

VFC_W (VFC)

Allotted_Resource_W AllottedResource:

Providing_Service:

Service_X

Service_X Service:

topology_template:

node_templates:

VNF_X (VNF):

Allotted_Resource_X (AllotRes):

VNF_X VNF Resource:

VFC_X (VFC)

Allotted_Resource_X AllottedResource:

Providing_Service:

Service_Z

Service_Z Service:

topology_template:

node_templates:

VNF_Zj (VNF):

VNF_Zk (VNF):

VNF_Zk VNF Resource:

VFC_Zk (VFC)

VNF_Zj VNF Resource:

VFC_Zj (VFC)

4

“VNF Chaining” Data Flow for Service_W Example 1

VNF_W

VNF_X

VNF_Zk

VNF_Zj
Service_W’s Allotted Resource

provided by Service_X

Service_X’s Allotted Resource

provided by Service_Z

AR_W

AR_X

AR_X

5

Modeling Network Latency Homing Constraints
for Allotted Resources

If Service_W is sensitive to network

latency beween VNF_W and the VNF_X

that hosts AR_W, then the homing

algorithm will need to select only VNF_X

instances that meet the Service_W

constraint. However, we don’t want to

write any homing (or any other) policies

for Service_W in terms of the internal

structure of the underlying “lower

order” Service type.

We can instead write the network latency constraint in terms of two policies, one a Service_W policy and one a

Service_X policy.

Specifically, we will define the concept of an “SLA” that the lower order service will advertise. We will give the “higher

order” Service a policy as to which SLA it requires from the “lower order” Service type. We will have the “lower order”

Service type have a policy which indicates from which VNF the SLA is measured (mirroring the data path)

6

SLA Z1

ResponseTime<30ms at VNF_Zj, if

SvcInstance created with configuration “P”

(not counting network latency)

SLA Z2

ResponseTime<20ms at VNF_Zj, if

SvcInstance created with configuration “Q”

(not counting network latency)

Service_W Service:

topology_template:

node_templates:

VNF_W (VNF):

Allotted_Resource_W (AR):

SDC Modeling Tool for Service Designer

VNF_W VNF Resource:

VFC_W (VFC)

Allotted_Resource_W AR:

Providing_Service:

Service_X

Service_X Service:

topology_template:

node_templates:

VNF_X (VNF):

Allotted_Resource_X (AR):

VNF_X VNF Resource:

VFC_X (VFC)

Allotted_Resource_X AR:

Providing_Service:

Service_Z

Service_Z Service:

topology_template:

node_templates:

VNF_Zj (VNF):

VNF_Zk (VNF):

Capabilities:

Capability_Z

VNF_Zk VNF Resource:

VFC_Zk (VFC)

Service_W Constraint:

Network Latency<30ms

Service_X Constraint:

Affinity: Co-Located
VNF_Zj VNF Resource:

VFC_Zj (VFC)Service_W Constraint:

Network Latency<20ms

SLA X1

RspTime<30ms from VNF_X
SLA X1

Service_Z Constraint:

Affinity: Co-Located

SLA W1

RspTime<65ms from VNF_W

“Lower Level Service Type” that

can be instantiated in real time

on an “on demand” basis

Key

Use SLA X1

Use SLA Z1

Application Latency 5ms

Application Latency 5ms

Requires Contrail

SLA Z1

SLA Z2Service_Z Constraint:

Affinity: Must be within geo-political

provincial/state boundary

7

SDC Modeling
Tool for Service
Designer

Application

Latency

Network

Latency

Cumulative

Latency

Advertised

SLA

VNF_Zk

VNF_Zj

VNF_Zk <-> VNF_Zj 0

Svc_Z Unknown 20

VNF_X 5

VNF_X<->Svc_Z 0

Svc_X 25 30

VNF_W 5

VNF_W<->Svc_X 30

Svc_W 65 65

8

VNF_Zj

Instance

Service_Z Policy:

SLA Z1 is provided from

entry point VNF_Zj

SDC Homing Policy Calculator

VNF_W

VNF_X

Instance

VNF_Zk

Instance

Service_W Constraint:

Network Latency<30msService_W Constraint:

Network Latency<20ms
AR_W AR_X

AR_X

Network Latency=0msService_W Policy:

Require SLA X1 from the

hosted Service_X instance

Service Y Policy:

Require SLA Z1 from the

hosted Service_Z instance

Service_X Policy:

SLA X1 is provided from

entry point VNF_X

Affinity: Collocated

9

Decomposition and Homing Approach
Note that, from a Service_W perspective, homing involves finding a cloud instance suitable for a new VNF_W instance such that the

constraint:

Latency: [geographic point on map] <-> VNF_W < 20 ms

(where the geographic point is the location of the residence), and such that the “Network Latency” constraint of “VNF_W <-> AR_W

< 30ms” is met. This involves knowing that the Providing Service for AR_W is Service_X. This processing would require

decomposition to have created the Service_W rows in the decomposition example. If an appropriate cloud instance and Service_X

service instance is found, then homing is complete.

However, if no such Service_X instance exists (i.e., OOF Service_X homing thread returns an exception), homing can determine that a

new one should be created “on demand.” In such a case, we want to take a separation of concerns approach whereby the

Service_W homing thread can delegate down to a Service_X homing thread for further solutioning.

Homing of a new Service_X instance would similarly require that decomposition of Service_X had been performed (i.e., the Service_X

rows oof the table). One goal of this homing is to find a cloud instance suitable for a new VNF_X instance such that the Service_W

constraint that VNF_W <-> AR_W < 30ms is met. However, we don’t want to violate separation of concerns between the Service_W

and the Service_X processing, so we will have the Service_W homing thread pass to the Service_X homing thread a constraint that is

written in terms that Service_X can understand:

Latency: [geographic point on map] <-> Service_X < 30 ms

(where the geographic point is a “proposed” location of the VNF_W yet to be created). Because the optimal location of VNF_W has

not yet been determined, this will likely require that the Service_W homing thread spawns multiple Service_X homing thread to solve

the overall homing problem. Step by step processing can be seen on the following slides.

10

Homing Example Flow

SO sends OOF a Service_W

homing request, providing

as an input constraint the

geographic location of the

residence. OOF Service_W

homing will comprise homing

for VNF_W and AR_W. OOF

homing for VNF_W will find

eligible VNF_W cloud

instances that meet the 20ms latency constraint with the residence. OOF homing for AR_W will, for

each eligible VNF_W cloud instance, want to find the set of Service_X instances to provide that AR_W

functionality that meet the 30ms latency constraint with that cloud instance.

11

Homing Example Flow (Cont’d)

However, we want to maintain

a separate of concerns

approach, and the Service_W

processing thread shouldn’t

know the implementation of

AR_W such that it can measure

latency to it. (This can be best

seen in the Service_Z example

to the right.) Thus, we will

have the Service_W OOF

homing request thread delegate selection of the optimal Service_X instance to a subtending Service_X OOF

thread. Thus, OOF can be seen as (logically) calling itself in parallel with multiple Service_X homing requests.

Each such request can be seen as providing as input constraints the geographic location of the associated

eligible VNF_W cloud instance and the SLA needed, in this case SLA X1.

12

Homing Example Flow (Cont’d)

Service_X homing knows that

SLA X1 is measured from an

entry point on VNF_X. Thus

Service_X homing is comprised

of looking for the optimal

Service_X instance whose

VNF_X instance is within 30ms

of the input geographic

location. If at least one such

Service_X instance is found,

thenhoming is done (except for optimization).

If no such Service_X instance can be found, then homing will determine whether the Service_X service

definition allows for dynamic instantiation of new Service_X instances. In this case we will assume “yes”, so

OOF would determine whether a new Service_X could be instantiated such that all constraints can be met.

13

OOF Service_X homing will

comprise homing for VNF_X and

AR_X. OOF homing for VNF_X will

find eligible VNF_X cloud instances

that meet the 30ms latency

constraint with the input

geographic location. OOF homing

for AR_X will, for each eligible

VNF_X cloud instance, want to find

the set of Service_Z instances to

Homing Example Flow (Cont’d)

provide that AR_X functionality that meet the 0ms latency constraint with that cloud instance. The pattern

recurs, however, that Service_X has no business understanding whether the 0ms latency constraint should

be measured from VNF_Zj or VNF_Zk, or even in fact that there exists a VNF_Zj or VNF_Zk. In order to

maintain separation of concerns, homing of AR_X will be delegated to a subtending request thread

delegate selection of the optimal Service_Z instance to a subtending Service_Z OOF thread.

14

Service_Z homing will thus

search for eligible Service_Z

instances such that the 0ms

constraint is measured from

the input geographical location

(in this case the potential cloud

instance location for VNF_X) to

an available VNF_Zj instance

(the point from which the

Service_Z SLA is measured.

Homing Example Flow (Cont’d)

If no such Service_Z instance can be found, then homing will determine whether the Service_Z service

definition allows for dynamic instantiation of new Service_Z instances. In this case we will assume “no”, so

the OOF Service_Z homing thread would return an exception to the calling Service_X homing thread. Such an

exception would likely not result in failure of the entire Service_W homing, but rather simply result in pruning

a branch of the overall potential homing solution tree.

Svc Type Rsc Type AR Prov Svc Advertised SLA Homing Constraints Capab Svc Struct

Service_W W1: RspTime 65ms end to end Ntw Latency: VNF_W <-> AR_W < 30ms

Service_W VNF_W Ntw Latency: Residence <-> VNF_W< 20ms

Service_W AR_W Service_X Require SLA X1 from Service_X instance

Decomposition Structure for Service_W Example 1

A
R

_
W

 P
ro

v
id

e
r’

s
S

v
c

S
tr

u
ct

Svc Type Rsc Type AR Prov Svc Advertised SLA Homing Constraints Capab Svc Struct

Service_X X1: RspTime 30ms end to end Affinity: VNF_X, AR_X Co-Located

Service_X VNF_X

Service_X AR_X Service_Z Require SLA Y1 from Service_Z instance

A
R

_
X

 P
ro

vi
d

e
r’

s
S

vc
 S

tr
u

ct

Svc Type Rsc Type AR Prov Svc SLA Policies Homing Constraints Capab Svc Struct

Service_Z Z1: <30ms with config “Q”

Z2: <20ms with config “P”

Affinity: VNF_Zj, VNF_Zk Co-Located

Service_Z VNF_Zj

Service_Z VNF_Zk

Homing Solution Example for Service_W Example 1
Service Type Resource Type Allotted Resource Provider

Service

Provider Service Struct Homing Solution

Service_W VNF_W Cloud_Region_1

Service_W Allotted_Resource_W Service_X Instantiation_Needed

A
R

_
W

 H
o

m
in

g
 S

tr
u

ct
u

re

Service Type Resource Type Allotted Resource Provider

Service

Provider Service

Struct

Homing Solution

Service_X VNF_X Cloud_Region_2

Service_X Allotted_Resource_X Service_Z Service Z Instance Id

A
R

_
X

 H
o

m
in

g
 S

tr
u

ct
u

re

Service Type Resource Type Allotted Resource Provider Service Homing Solution

Service_Z VNF_Zj As Exists

Service_Z VNF_Zk As Exists

Generic Service Level Flow for Service_W Example 1

onap_uc_Generic_Service_Recursive_p1.html

Decomposition Detail Flow for Prior Example

onap_uc_Generic_Service_Decomp_p1.html

Instantiation Detail Flow
for Service_W Example 1

Note recursion in the process

onap_uc_Generic_Resource_VNF_Recursive.html

Scale PPT to 300% to

view detail. ☺

Potential insertion points

for Cloudify? Do we want

to do that as part of this

POC? Or just stick with

Camunda?

20

Backup Slides

21

L3VPN_Cust Service:

topology_template:

node_templates:

VRF

Allotted Resources – vPE/VRF Example

VRF Allotted Resource

requirement: VRF_Capability

vPE_Infra Service:

topology_template:

node_templates:

vPE VNF

vPeNet_Network

capability: VRF_Capability

vPeNet Network

vPE VNF

Every Resource can be exposed as a Service. The ONAP model supports this today through

the “Allotted Resource” construct. This concept of “Allotted Resource” does not seem to

appear in the ETSI model. Perhaps this is due to ETSI seemingly covering only instantiation

of Infrastructure Services, and not instantiation of end Customer Services.

“Higher Level”

Service

“Lower Level”

Service

In this case, the vPE VNF has been packaged

as an Infrastructure Service. An instantiation

request for this vPE_Infra Service would

result in a new vPE VNF being instantiated.

The vPE_Infra Service exposes a capability to

provide “VRFs” (a “VRF_Capability”). The

L3VPN_Cust Service consumes this capability

through its “VRF Allotted Resource” construct.

An instantiation request for a L3VPN_Cust Service would

result in a VRF being instantiated. That VRF would be

“homed” to an existing vPE_Infra Service instance (i.e., the

vPE VNF instance on which this VRF will be configured).

1

23

4

L3VPN_Cust Service Instance

Instance “A”

vPE_Infra Service Instance

Instance “X”

VRF Allotted Resource Instance

Instance “B”

vPE VNF Instance

Instance “Y”

vPeNet Network Instance

Instance “Z”

In A&AI an actual instance object represents the Allotted

Resource separate and distinct from the Services involved.

4

22

CPE

Svc

CPE

Svc

E2E Service

Transport Service

ONAP

ONAP Cloud Manager

sol005

sol005

sol005

23

Service X:

topology_template:

node_templates:

PNF

Network

VNF

Allotted Resource

PNF

Model-Driven Orchestration

Service

Orchestration

Network

VNF

Allotted Resource

requirement: A

VF Module

Service Y:

topology_template:

node_templates:

PNF

Network

VNF

Allotted Resource

capability: A

PNF

Service

Orchestration

Network

VNF

Allotted Resource

Resource

Orchestration
Cloud Resource

Orchestration

Resource

Orchestration

An Allotted Resource can be homed to an

existing “underlying” Service Instance, or

homing could determine that a new Service

Instance is needed. This would result in a 2nd

level of Service Orchestration.

Each Resource Type has its own “Generic”

model-driven flow. There currently exist such

flows for “VNF” and “Network” Resource Types.
“Generic” model-driven Service flow (limited existing)

Recursion

Service Y is being treated

as a “Resource” from the

perspective of Service X.

Note that network function virtualization

should enable Service Providers to trigger

deployment of an instance of a “Lower

Level” Infrastructure Service using a

“demand based instantiation” approach.

24

N-Level Run Time Nesting? Let The Service Providers Decide

Service_W Modeling Example 2

Service_W:

topology_template:

node_template:

VNF_W

VNF_X

VNF_Y

VNF_Zj

VNF_Zk

Service W:

topology_template:

node_templates:

VNF_W

Service_X

Service X:

topology_template:

node_templates:

VNF_X

Service_Y

Service Y:

topology_template:

node_templates:

VNF_Y

Service_Z

Service Z:

topology_template:

node_templates:

VNF_Zj

VNF_Zk

Design Time

Distribution Time & Run Time

VNF_W

VNF_X

VNF_Y

VNF_Zj

For the case whereby a “higher level Service”

consumes the entirety of a “lower level Service’s”

instance, SDC should support the Design Time

ability to construct an “upper” Service Definition

from other Services definitions via substitution

mapping (a.k.a., “Compile Time Nesting”)

The “lower level Services”

would not be visible at

Distribution Time. Hence a

“flattening” of the run-time

orchestration would result.

Substitution Mapping

VNF_W VNF Instance

Instance “1”

VNF_X VNF Instance

Instance “2”

VNF_Y VNF Instance

Instance “3”

VNF_Zj VNF Instance

Instance “4”

Service_W Svc Instance

Instance “1”

A&AI Instance Representation of

Service_W Modeling Example 2

The entirety of these VNFs,

not just a portion thereof,

are dedicated to the

Service_W Service Instance.
VNF_Zk

VNF_Zk VNF Instance

Instance “4”

