e e]

Resource

Orchestration -—

I

——

Service
Orchestration ¢

L
Service_W: L
topology_template:
node_templates:
VNF_W
Allotted_Resource_ W =

1
N,

> Allotted_Resource_W

requirement: X
1

Service
Orchestration -

—i

N-Level Run Time Nesting? Let The Service Providers Decide

Service_W Modeling Example 1

Each Service/Resource “reuse unit”
results in a separate thread of
orchestration. This would allow for
“on demand” spin up of “lower level”

(Infrastructure) Service instances.

See next slide for an alternative modeling approach that
could be used when a “higher level Service” consumes the
entirety of a “lower level Service’s” instance. This
alternate approach may be appropriate for a Service
Provider who is concerned about the run-time complexity
that can be introduced with N-Level run time recursion.

CITHELINUXFOUNDATION

1 \ s
1 Resource —L:E
|| Service_X: Orchestration —___
[} topology_template:

\ node_templates:

AN o i - VNF_X

. . ren> [

_\) Allotted_Resource_X ===
capability: X \, Allotted_Resource_X
> = = Service o

requirement: Y

Orchestration —

\ Resource 5T

NOISSNJSIA Y04 14vHd

Could be extended to allow
multiple “higher level Services”
to each have a “share” of a

1
: Service_Y: Orchestration : “lower level Service’s” instance
l‘ topology_template:
\ node_templates: e [VNE Y
\ UNFY ========= meeme= | VNE
\A Allotted_Resource_Y = -
ility: R o [=
capabliyiy ‘\\> Allotted_Resource_Y service. e
requirement: Z Orchestration /—__ \

1
1
\

\
\~>

=l

Resource
N]
Orchestration —

->
ey
-
s>

M

Service Z:
topology_template:
node_templates:
VUNF Zj ===
VNF_Zk =77
capability: Z

A&AIl Instance Representation of Service W Example 1

Instance “3”
~

‘{ AllottedResource_Y AR Instance J

A
\\> Allotted_Resource_W
requirement: X < = [e
Service

VNE W VNF Instance J In this example, the entirety of VNF_W is dedicated O

e B { ‘Instance “1”] to the Service_W Service Instance, but only a portion :)g

[Instance “1” } (represented in A&AIl as AllottedResource_W) of the T

AllottedResource_W AR Instance e - ~

Instance “1” N XN lower level” Service_X Service Instance is dedicated -,

: ; N [Estancen,,sztfnce] to the Service_ W Service Instance. This pattern (@)

SR A e el [Ser"ice—x Sve '"Stance] repeats itself for the other Service Instances shown. =
i i ¢ ili Instance “2”

O provided by Service_X's Capability_X ~{ AllottedResource_X AR Instance O
—— B Resourrﬁ 2o \ Instance “2” (.71
tcpulog}_{emplate: Crchestration 3 - \\\ VNF_Y VNF Instance (@)

v I \ Service X's Allotted Resource [SR e] - Instance “3” &

Allotted_Resource_W === provided by Service_Y’s Capability Y Instance “3” a
—

] Orchestration —___ q 7
i \ Resource. PP Service_Y’s Allotted Resource Service ZSvc Instance VNF_Zj VNF Instance
1 Service_X: Orchestration — provided by Service_Z's Capability_Z Instance “4” Instance “4”
I‘ topology_template:
\ node_templates: o
N PV R VNF_Zk NF Instance
Y Allotted_Resource_X fe=my Instance “4”
AR \‘> Allotted_Resource_X PR == =
requirement: Y Orchestration — \
: Resource 5
1 Service_Y: Orchestration —
|| topology_template:
1 node_templates: o
\ UNFY smsmmemss odeem==D | VNEY
‘A Allotted_Resource_Y = =,
capability: ¥ ‘\~> Allotted_Resource_Y Service =+ 1.

requirement: Z Orchestration [—|_| \

1 Resource - ¢
Orchestration —__

]
1
\ i
\ Service Z:

~. "
sﬁ topology_template: '__9 VNF_Zj

node_templates: ¥

C1THELINUX FOUNDATION Wi Ty —

Topological Model for Service_ W Example 1

VNF_W VNF Resource:

-
Service_W Service: VFC_W (VFC) et - :\V
a ’
topology_template: s N VNF_Zj VNF Resource:
node_templates: Al . WAl /7 | VEC_7j (VFQ)
) otted_Resource ottedResource: =
VNF_W (VNF): - - / Service_Z Service:
Allotted_Resource_W (AllotRes): Requirement: ! topology_template: VNF Zk VIF Resource:
Capability_X ! node_templates: VFC_Zk (VFC)
G ! VNF_Zj (VNF): =
T TS~ i 1 VNF_Zk (VNF):
TS \ Capabilities:
M VNF_X VINF Resource: AN c o %
L] N apability_Z
_ . VFC_X (VFC) ~ >
Service_X Service: S M
topology_template: Seao :
~
node_templates: Allotted_Resource_X AllottedResource: S e (@)
VNF_X (VNF): . N i~
M ~
Allotted_Resource_X (AllotRes): Reqwrenbﬁ.nt. y *s~~ E
Capabilities: CE S — ~~~~~ W
Capability_X am—— SO 8
V4 ~.~~.’ v ~~\ 3
k. T ~
X VNF_Y VNF Resource: S %
, =l VFC_Y (VFC) ~
Service_Y Service: \ <
topology_template: ‘|
. 1
node_templates: Allotted_Resource_Y AllottedResource:]
VNF_Y (VNF):) _ /
Allotted_Resource_Y (AllotRes): Requwem.T.nt. /'
Capabilities: Capability_2 R
Capability_Y [-~
CITHELINUX FOUNDATION - KJ o

-

“VNF Chaining” Data Flow for Service W Example 1

3

>

R

Cwwew :
-

o

X

Service_Y’s Allotted Resource)

provided by Service_Z’s Capability_Z (‘-!’3

| &

SCARWS T N T 2

- =

\
Service_W’s Allotted Resource
provided by Service_X’s Capability_X

T

Service_X’s Allotted Resource
. provided by Service_Y’s Capability_Y

CITHELINUXFOUNDATION

NMInnn

Modeling Network Latency Homing Constraints
for Allotted Resources

If Service_W is sensitive to network

latency beween VNF_W and the VNF_X
that hosts AR_W, then the homing N
algorithm will need to select only VNF_X - <:A@ — s T
instances that meet the Service_W 4

constraint. However, we don’t want to pmifd'ffgy"i:rﬁﬂ;’fff o

write any homing (or any other) policies <@ ACR@
for Service_W in terms of the internal é

structure of the underlying “lower .. W e i 4 1

order” Service type.

Service_Y’s Allotted Resource
provided by Service_Z's Capability_Z

NOISSNJSIA Y04 14vHd

We can instead write the network latency constraint in terms of two policies, one a Service_W policy and one a
Service_X policy.

Specifically, we will define the concept of an “SLA” that the lower order service will advertise. We will give the “higher
order” Service a policy as to which SLA it requires from the “lower order” Service type. We will have the “lower order”
Service type have a policy which indicates from which VNF the SLA is measured (mirroring the data path)

CITHELINUXFOUNDATION

Modeling Network Latency for Service W
Example 1

Homing for AR_Y consists of, for each potential VNF_Y cloud region, find all Service_Z

Service_X Policy: instances with a network latency less than 45ms. To find such Service_Z instances,
____________ Require SLA Y1 from the homing must know which SLA AR_Y depends on (in this case SLA Z1) and also know
P "“\\ hosted Service_Y instance from where it is measured (in this case, VNF_Zj). So homing is really looking for all

‘\\ VNF_W A Service_Z instances such that its VNF_Zj instance is within 45ms network latency.
A ¥,
o Service_W Constraint:
Service_W Constraint: Network Latency<30ms
Network.Latency<15ms "(—_—
o ~

Service_Y Policy:

SLA Y1 is provided from
entry point VNF_Y

AR W7 VNF_X

/ Instance
Service_W Policy:

: Require SLA X1 from the

hosted Service_X instance

VNF_Zk
Instance

—
Service_Z Policy:
SLA Z1 is provided from

entry point VNF_Zj
Service_X Policy:

SLA X1 is provided from
entry point VNF_X

Instance

Homing for VNF_W consists of finding eligible cloud regions within 15ms of the residence.

Homing for AR_W consists of, for each potential VNF_W cloud region, find all Service_X instances

with a network latency less than 30ms. To find such Service_X instances, homing must know
which SLA AR_W depends on (in this case SLA X1) and also know from where it is measured (in

CITHELINUX FOUNDATION

Service Y Policy:
Require SLA Z1 from the
hosted Service_Z instance
this case, VNF_X). So homing is really looking for all Service_X instances such that its VNF_X
instance is within 30ms network latency. Homing for VNF_X and AR_X follows the same pattern.

NMInnn

Key

“Lower Level Service Type” that
can be instantiated in real time
on an “on demand” basis

sewmamssEREsEEaREEEERaEx
-
et
Py
.

Homing Policies for Service_W Example 1

h e L LI T Ty
ey
e
.

.

K v — SLAW1 *

R [] RspTime<110ms from VNF_W

Service_Z Constraint:
VNF_W VNF Resource: ‘4 Service_W Constraint: e Affinity: Co-Locat;ed
i ice: VFC W (VFC) Network Latency<30ms -~ \ o :
Service_W Service: Application Latency 5ms /z \‘V 74 :
topolc:jgy_templlate: /’ N VNF_Zj VNF Resource: :
node_templates: o ’ . H
- Allotted_Resource_W AR: 4.+* / L VFC_Zj (VFC) :
VNF_W (VNF): o - ,/ Service_Z Service: A
Allotted_Resource_W (AR): Reqwren'?t.ent: Use SLA X1 ’I topology_template: VNF_Zk VNF Resource:
Capability_X 2 { node_templates: VEC_Zk (VFC)
. SLAXL o, — G \ VNF_Zj (VNF): Requires Contrai
% RspTime<75ms from VNF_X ,""'"~-S—LA o 7 \\ VNF_Zk (VNF):
K X et 4~ \s\ Capabilities:
|] VNF_X VNF Resource: Service_X Constraint: N4 Capability_z StAzl N
Service_X Service: VFC X (VFC) Affinity: Co-Located —1\\ '\ESponSETIme<30rc1j”|s a.thVNF_f.Zj, if -
H topology_template: Application Latency 5ms E \\\ Svclnstanc.e created with configuration “P
Service W Constraint: = ~o (not counting network latency)
Network Latency<20ms node_templates: Allotted_Resource_X AR: Ssol SLAZ2
< \ VNF_X (VNF): Requi) “ResponseTime<20ms at VNF_Zj, if
Allotted_Resource_X (AR): eqmrgment. Svclnstance created with configuration “Q”
: Capabilities: Capability_Y Use SLA Y1 (not counting network latency) \
H ~
H Capability_X ——~ D ‘~~~ g
i — W SLAYL_; Sl ﬁ
2 T - . PEPETTL LT LT ~, <
y.:) SLAYL - - L1 VN\;EZ ‘\/(A?Cf Ce)s ource: | & Service_Y Constraint: ~\\\ =
RspTime<70ms from VNF_Y X . . M
- Service_Y Service: ¥ Application Latency 5ms NEthlfk Latency<35ms SLAZ1 O
. Service_Y Constraint: topg:)odgg_: :rrnnpll:'::s:- ’,.”‘ < SLA 722 g
D Shi Affinity: Must be within geo-political VNE Y (F\)/NF)-‘ ...~‘ Allotted_Resource_Y AR: S S
incial/state bound - - , _ ’
provincial/state boun ary_" Allotted_Resource_Y (AR): F RequwenTgnt. Ve 8
X Capabilities: Capability Z Use SLA 71 e S
CITHELINUXFOUNDATION:., Capabm'ty ’ M N

.

Decomposition Structure for Service_W Example 1

Service_ W

W1: RspTime<80ms from VNF_W

Ntw Latency: VNF_W <-> AR_W < 30ms

Service_ W

VNF_W

Ntw Latency:Residence <-> VNF_X < 15ms

Service_ W

AR_W

Service_X

Require SLA X1 from Service_X instance

1 TH

p L

NOISSNOSIA Y04 14vHd

Service_X X1: RspTime<45ms from VNF_Y Affinity: VNF_X, AR_X Co-Located
Service_X VNF_X

+ Service_X AR_X Service_Y Require SLA Y1 from Service_Y instance
>
s 4)\
% | swtwe [Rsctvpe | ARCapabsuc | stapolides | HomingComstraimts | Capabsvestruct
o
3, Service_Y Y1: RspTime<40ms from VNF_Y Ntw Latency: VNF_Y <-> AR_Y < 45ms

)
-g s Service_Y VNF_Y Affinity: Residence, VNF_Y within state
o % boundary {CA, OR, MA, RI, NH}
©
o % Service_Y AR_Y Service_Z Require SLA Z1 from Service_Z instance
; No) 4

I ©

= |8 [sctype | Rsctype [ARCapabsvc | siapolices [HomingComstraints [Capabsvestruct |
< O 2

><I S *g Service_Z Z1: <30ms with config “Q” | Affinity: VNF_Zj, VNF_Zk Co-Located

o 8 5 Z2: <20ms with config “P”

< N

g::l 2 | service z | VNF_zj
Service_Z VNF_Zk
_

1SS

Decomposition and Homing Approach

Note that, from a Service_ W perspective, the goal of homing is to find a Service_X instance which meets the
Service_W “Ntw Latency” constraint of “VNF_W <-> AR_W < 30ms”. This would require decomposition to
create the Service_W rows in the decomposition example. If such service instance is found, then homing is
complete. However, if no such Service_X instance exists, homing can determine that a new one should be
created “on demand.”

Creation of a new Service_X instance would require decomposition of Service_X (i.e., the Service_X rows only)
for a second homing attempt. From the Service_X perspective, the goal of homing is to find a Service Y
instance which meets the Service_X “Affinity” constraint that “VNF_X, AR_X Co-Located” and such that the
“Ntw Latency” constraint of “VNF_W <-> AR_W < 30ms” is also met. (Note that the network latency of AR_W is
measured from the Capability X SLA, which is in turn measured from VNF_X.) Thus, in order to solve the
Service_X homing problem, consideration must be given to the Service_W constraints. If homing finds no such
Service_Y instance, it can determine that a new one should be created “on demand.”

NOISSNJSIA Y04 14vHd

From this point the recursion pattern is set: for nested Services such that the “lower level” Services can be
instantiated “on demand”, it is necessary to solve the homing problem holistically. Thus, we will opt in the
subsequent slides for SO to do a full decomposition prior to a single homing attempt.

CITHELINUXFOUNDATION

R R
s{ »
" NN .
N S \
\\\\ .,

N NN
L"ﬂ., \\ N\
NN

Generic Service Level Flow for Service_ W Example 1

Generic Service Instantiation Flow (Recursive)

(o] Decomposition
(Service Level): Orchestration BB SMNIRO
Client I Catalogue I GensSvc: Service_W Senvice_W+ Homing BB I Conductor | | A&AI I

T

|

|| Mote that this diagram must be updated to incorporate

1| the correct OMNAP internal APl names. For now only intuitive
> | names have been used for the sake of readability.

|

|

|

I

|

|

[N
Create Genbrlc Service Instance
(Type= Service W, Cloud_Config_Data)

Get SvcTemplate
[Type=Service_W)

|

|

|

I

|

! ! Assign Service Instance
| | Inventory Object UUID ()
|
I
U

|
|
|
|
|
|
|
|
|
|
|
Ack (UUID=Service_w UUID) i
|

NOISSNJSIA Y04 14vHd

-

I
!
I
I
I
]
]
I
!
I
I
I
I
I
I
!
I
I
i i
o i i |
| | | Create Service Instance Inventory Object (Type:Semice W,JUID) N
I I r Eal
I I L L
! ! Decomposition (See details on “Decnmpusltmn Details" sequence diagram) / !
i i i || so Generic Senvice Level flow calls the "Decomposition Building Block",
1 1 1 || "Decompose" consists of parsing the TOSCA Service Template content
i i i _ : 1| to determine the complete set of Resource Node Types, which we will
\ \ : Decompuse (Type=Service W) > | assumne to be as shown in the PPT slide "Decomposition Structure for
i i i 1| Prior Example". Also included (not shown] is determining the instantiation
X X X || sequence between the template Node Types based on the template content.
: : | | i i i
| | ! | ! n - q q T
i i I i 1| The service_W workflow calls the Homing BB, passing in
\ \ \ | || the pointer to the Decomposition structure, The Homing
! ! ! Homing ! 1| Building Block pulls the Decompaosition structure and passes
1 1 ; ; » | and p as a set of Resource Demand Types to be
' ' ' I ' hormed, which we will assume to be as shown in the PPT
X X X | | slide "Homing Solution Example Structure for Prior Example".
I I I | I
e ' ' I I I
1 1 Instantiation (See details on "Instantiation Details" sequence dlagram)
nap_UC_GenerlC_Seerce_ReCU rSIVe_pl.html i i Service_W workflow uses the Service_w model to instantiate Dy i
' ' Allotted_Resource_W (AR_W) and WNF_W,. Because of the nested '
I I nature of Service_W in Example 1, there is much recursion invelved. I
1 1 See details on other sequence diagram. 1
i i '
_ Success | | | \ \ \
! !

' ! ! ! ! ——
El THE LI N ux FOUNDAT'ON Client l Catalogue l ={e] Decomposition Homing BB l SNIRO M —

(Service Level): Orchestration BB Conductor N
Gensvc: Service_W Senvice_W+ \\\\\\\

Decomposition Detail Flow for Prior Example

Details Flow (
S0 Decomposition Decomposition Decomposition Decomposition Decomposition Decomposition Decomposition
(Service Level): Orchestration BB Orchestration BB Orchestration BB Orchestration BB Orchestration BB Orchestration BB Orchestration BB
GenSvc: Service_ W GenSvc: Senice W ‘GenAR: AllotRsc_W GenSvc: Service_X GenAR: AllotRsc_X GenSve: Senvice Y GenAR: AllotRsc_Y GenSve: Service Z Decumuoserl

| Decompose (Type=Service W) _ |
Decompose (Type=Service W,

[Ganeral pattern: Semice Ievel Becompostion wi Rt detarmming the RESource types needed £ Al the Servica msranmmn SR R S LA o I
Capabiltty Service type that wil meet the AR's requirement type, Assume this is not based on homing policies or any optimization, but rather is deterministic for the given AR type.
assumes that decomposition of a Service doesn't depend on which “Capability* it is providing to a "higher order” e T o e e S e e o ::agahmty)

1
1
1
1
1
1
|
Decompose (Type=Service W) | :]]] |

i i i i i i v |
Capture WNF_W row in PFT)| Struct (YNF_W, AR W) I I i I I | |

h
| Decompose (Type=AllotRsc_W)
ELompene Lype e

Decompose (Type=AllotRsc_W)
Struct (AR_W -> Service_X)

Decompose (Type=S5ervice X}
e

Decompose Service X/

| Decompose (Type=Service_X)

|
Capture VNF_X row in PPTL),|_ Struct (VNF_X, AR)

| Decompase (Type=AllotAsc X}
Rt el lomal i S

Decompose (Type=AllotRsc_X)

Struct (AR X -> Service V)

| Decompose (Type=Service_Y)
> 1

Decompose Service Y __J
|
r
i
Capture VNF_Y rowin PPT | Struct [VNF_Y, AR ¥}

"
| Decompose (Type=AllotRsc_Y)
LRSS e

NOISSNJSIA Y04 14vHd

Decompose (Type=Service)

Decompose (Type=AllotRsc_Y)

nap_uc_Generic_Service_Decomp_pl.html

Struct (AR_Y -> Service Z) |

| Decampose (Type=Service 7)

Decompose Service Z __/

| Decompose (Type=Service_Z)

| Capture VNF Zj and
! Capture VNF_Zjand). _ Struct (VNF._2), VNF ZK)

Success (Service_Z Struct)

column ("Capab Swvec Struct”) of the AR_Y PPT row.

The Service_Z Struct returned comprises the 6th ‘T Consalidate AR_Y info

Capture AR Y rowin PPT,) | Success (AllotRsc_Y Struct) |

Success (Service ¥ Struct)
I Suceess Sane ¥Stuch)

column (“Capab Swc SEruct”) of the AR_X PPT row.

The Service_Y Struct retumed comprises the Bth '3| Consolidate AR_X info

Success (AllotRsc_X Struct) !
————————————

-
Success (Service X Struct)

g2 oeress DEVRE AT

The Service X Struct retumed comprises the 6th)| Consolidate AR Winfo
alumn ("Capab Sve Struct”) of the AR_W PPT row. :

Capture AR_W row in PPT. Success (AllotRse_W Struct)
3 ‘

Success (Service WStructl | |

CITHELINUXFOUNDATION

<RI L R

S0 Decomposition Dec i D ition Decomposition Decomposition Decomposition Decomposition Decomposer I \
(Senvice Level): Orchestration BB Orchestration BB Orchestration BB Orchestration BB Orchestration BB Orchestration BB Orchestration BB
GenSve: Service W GenSuc: Senice W GenAR: AllotRsc_W GenSve: Senvice_X GenAR: AllotRsc_X GenSwe: Senice_Y i

GenAR: AllotRsc_Y Gensve: Service_Z
\\\\\\\\\\\\\\\\\

Homing Solution Example for Service_W Example 1

Service_ W VNF_W Cloud_Region_1
Service_W Allotted_Resource_W Service_X : Instantiation_Needed

g Structure

AR_W Homin

1 TH

Service_X

VNF_X

Cloud_Region_2

Service_X

Allotted_Resource_X

Service_Y Instantiation_Needed

e

g Structure

AR_X Homin

Service_Y VNF_Y Cloud_Region_2
Service_Y Allotted_Resource_Y Service_Z Service_Z_Instance_327
£, | seniceType | ResourceType | AlotiedResource Capabiltyservice | HomingSoltion |
£ o
€ 5)) :
:% B Service_Z VNF_Zj As Exists
>
:l & Service_Z VNF_Zk As Exists -
-
< —
—

NOISSNJSIA Y04 14vHd

High Level Allotted Resource-Level Instantiation for Example

e S0 el SoEmtnal) S0 Exsting] o St
sevielever: [| esource tovet sevceteve: | | resource e senscelever: | | esoure Lot sensceteven: | | esoe et
inoue Somico-w | | Gena iotac | | Genbe: e x | | Genah e 0 s Senee.r | | ers s | [sense sewee 2 | | Gonn i 2| [[sowec | [rowez] [rer])
JISE——
! i
wuio)
| Get Service W L i
Homeng Solition [The Servce.y X N
] ™ ™ f
Wi 7

The Senvc
Homing Saoton o2 e

Instantiation Detail Flow :

Get AR Woming St [A N

for Service_ W Example 1 =

e

e AW o asses the ARLWHomng Stuctureof the Homing Saifon i @ Sece X evl vardion)
e - bng Ko hok s opacoe Tt contois he nomi Hlomiaton ot Rerest 1 the SePvte X vordion
CHomingsouriors)

Wi passes the AL Yo othe h|

Resource WUUD)

Assign Servce WD
=

uboy i

i Get Service X - L L '
e 3 Y

] v , :

xs Fosowree o :
Croie Gerarc : :
Servee Kfowpaeees e A X :
Resume Servee Xoiode e ;

) e e e oo e et

| Asotted_Rasource_ X must be instaniiated fist Alotted_Resource X, || included is the multi-nested AR_X Homir H

Scale PPT to 300% to =
ZJ

source UUID() H
view detail. © ‘ — ’
4 Getan i
v AR K Towary cores shout AT
= [B
byt | ‘Sokution is incomplete i
Soson s mcomplee | TS ARZEONE! v-\sran(esumnmvmv\mwm;rsmuunean:«\mancewism\:zv hl f
e S Y : ; - - i
Crate Ganerc ! H H
Servce e AR e h kg St o 7 fog okton 0 3 S Vel ortow :
hpecsenee Do et spados s, oo mres e Sorvee Y vriion. i
BTt e ;
i Jump— : i
i L~ ! | H
Crota “hvo) :
: Gerserve ¥ : :
oy Seiton S o of e o Sovn

/ Revume 55 per Service Y ModeT The Aloied Resource ¥ MUt B P 3 f
Create Generc it i
Servce Y owpasses the AR Y rowal e

== .

Aesume a2 pr the Senice Y Model, the BI
oked. Redource Y.

NOISSNJSIA Y04 14vHd

i Assign Alotied :
i Resource LD
—

i Create Atotted Resource nentory nstance.
(TypeAtotted Resource 1UUD)

Note recursion in the process

Ao 500 [o e s o Y v e S) :

— [z e, T) f

contin 3 %) .
Next, nstanate VNE e i
e e e ;
Vierpute>) i 3
Success (<Senvce.Y ' 1 i
o ‘ i ; i
Spda o 3 : X Y H
e e L :
3 Xuuo)
¥3) 3
1 Success ' .
. . A s o g B “|| i
onap_uc_Generic_Resource_VNF_Recursive.html ‘ —
su:‘uy;r(s‘;.:e,x H H
e o ‘ 1 vee Y

Servce XUUD s po
ol o the AR W Homing Soiton trucure.

woup)

THELINUXFOUNDATION — — } —

Next nstantete VNF_W. Detass o shown due 19 real estate considerations_Functions include creating VIF natance object
N AGAL caling SDNCT0 0btan assignments. creat the VNI W MUl VI, nd actnatgicon'uring the VNF va Apoc W

50 [Exstin] s0 50 Exsting) s0 sotoaing) | [[sonc] [wocz] [mocy] ropcw]
(Resource Lever eniceewn: | | esource uvel (senice Lewe: | | (Resource Lever.
GenaR: AsotRsc X) Gensuc: senvce | | GenAR: Alotasc Gensic: senice 2 | | GenaR: AlotRsc_2)

i

(Resource Leve

50 (Existing]
GenAR: AloRsc V)

S0
(service Leve):
Genswc: Senice W

Backup Slides

CITHELINUXFOUNDATION

NMInnn

Allotted Resources — VPE/VRF Example

Every Resource can be exposed as a Service. The ONAP model supports this today through
the “Allotted Resource” construct. This concept of “Allotted Resource” does not seem to
appear in the ETSI model. Perhaps this is due to ETSI seemingly covering only instantiation
of Infrastructure Services, and not instantiation of end Customer Services.

An instantiation request for a L3VPN_Cust Service would
result in a VRF being instantiated. That VRF would be
“homed” to an existing VPE_Infra Service instance (i.e., the

VPE VNF instance on which this VRF will be configured).

“Higher Level”
Service

In this case, the vVPE VNF has been packaged
as an Infrastructure Service. An instantiation
request for this vPE_Infra Service would
result in a new vPE VNF being instantiated.

The VPE_Infra Service exposes a capability to
provide “VRFs” (a “VRF_Capability”). The
L3VPN_Cust Service consumes this capability
through its “VRF Allotted Resource” construct.

L3VPN_Cust Service:
topology_template:
node_templates:
VRF =====a

\
\ VRF Allotted Resource
"3 requirement: VRF_Capability “Lower Level”
R Service
\ _-==> | VPE VNF
‘\\ VPE_Infra Service: II'
AN topology_template: A
[L3VPN_ICust Servilceﬂlnstance] \\s node_templates: /I f,-) vPeNet Network
nstance /} \\~ . VPE UNF m— e e - I,
B ~"“~~~-___ vPeNet_Network ====F==*
[VRF Allotted Resource Instance Ty capability: VRF_Capability
Instance “B”
~~_| VPE_Infra Service Instance
[Instance “X”]‘ ~~~~~~ { VPE VNF Instance]
- Instance “Y”
\\ In A&AI an actual instance object represents the Allotted
CITHELINUX FOUNDATION [vPeNet T Instance] Resource separate and distinct from the Services involved.
Instance “2” N
A aaa™

Model-Driven Orchestration 0o

“Generic” model-driven Service flow (limited existing) ‘ model-driven flow. There currently exist such
flows for “VNF” and “Network” Resource Types.

N
Service o T Resource
. i Note that network function virtualization
Orchestration _’L_, Orchestration I Cloud Resource — E E should enable Service Providers to trigger
. — deployment of an instance of a “Lower
-->| PNF Orchestration i Level” Infrastructure Service using a
S ice X ,” ' ' ' “demand based instantiation” approach.
ervice A: 4
14
topology_template: K
_ : ¢ _==>| Network .===>| VF Module]
node_templates: /1 /, e Recursion
PNF —=mmmea——- - S J/
Network ======- pm———— s
L d
UNF e ______——"'"'> VNF | ===———==—— -
Allotted Resource F====== -~ : LI 11 N N _—
Y Service - Resource ——
“~=>| Allotted Resource Orchestration — Orchestration —{ |
requirement: A ‘ I
\ /’___> PNF
An Allotted Resource can be homed to an “ Service Y: 4
existing “underlying” Service Instance, or \\ topology_template: ,I
homing could determine that a new Service \ Zo werlae 'I ’__.> Network
Instance is needed. This would result in a 2" \\\ Tk P ' g /’ 'Y Y
level of Service Orchestration. ﬂ S eeel PNF —==—=—=—- i
E— -> Network ======- e
Service Y is being treated VNE ____..---) VNF
as a “Resource” fromthe | | VNI mmEmmEmmEmsss ==
perspective of Service X. Allotted Resource T====== ~~,
capability: A AN ;]
C1THE LINUX FOUNDATION ~~>| Allotted Resource |

NMInnn

N-Level Run Time Nesting? Let The Service Providers Decide

Service_W Modeling Example 2

For the case whereby a “higher level Service”
consumes the entirety of a “lower level Service’s”
instance, SDC should support the Design Time
ability to construct an “upper” Service Definition
from other Services definitions via substitution
mapping (a.k.a., “Compile Time Nesting”)

Service W:

Service X: Service Y:

topology_template:

topology_template:
node_templates: pnodgg_tem;ates: topology_template: Service Z:
VNF_W VNF X node_templates: topology_template:
Service_X Service Y VNF_Y node_templates:
- Service_Z VNF_Zj
VNF_Zk
. . Substitution Mapping
Design Time
Distribution Time & Run Time senvice 2T

Orchestration — | ———

oo
Resource T

Orchestration — |

A&AIl Instance Representation of
Service_W Modeling Example 2

- -=> | VNF_W { VNF_W VNF Instance]
The “lower level Services” Service_W: /’ [Servicle_\tN sve J;Is,tance]“ Instance “1
would not be visible at topology_template: ,’ i \\‘:\{ VNF_X VNF Instance]
—— A “yn
Distribution Time. Hence a node_template: FiVan > | VNF_X v \\\\ J0nceR?
“flattening” of the run-time VNF W ____—*',/ k0 \[VNF_Y VNF Instance]
orchestration would result. VNE X =====F" —===> | UNF_Y ‘\“\ Instance “3”
— ’ — \
VNF Y ===== - The entirety of these VNFs, % \("VNF_Z] VNF Instance
VN F_Zj _____ I VNF_Zj not just a portion thereof, ! ‘{ Instance “4”]
- ———=> = are dedicated to the Y
VNF 7K ====a —— i i VNF_Zk VNF Instance
CITHELINUX FOUNDATION — Seee > Service_W Service Instance. Instance “4”

Ay

