

Microservice Bus Tutorial

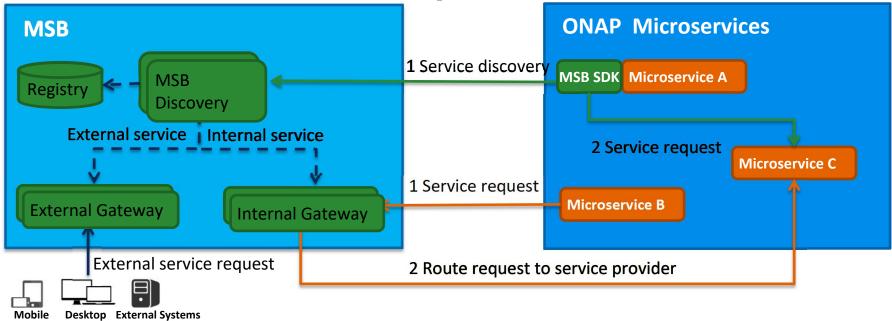
Huabing Zhao, PTL of MSB Project

Agenda

MSB Overview
Service Registration
Service Discovery
Example & Demo
Suggested Integration Approach
Future plan

MSB Overview-Introduction

Microservices Bus(MSB) provide a reliable, resilient and scalable communication and governance infrastructure to support Microservice Architecture including service registration/discovery, external API gateway, internal API gateway, client SDK, etc. It's a pluggable architecture, plugins can be added to MSB to provide whatever functionalities you need, such as an auth plugin can be used to provide centralized authentication & authorization. MSB also provides a service portal to manage the REST APIs.


Note: MSB doesn't depend on a specific environment. It can work in bare metal, virtual machine or containerized environment.

MSB Overview-Functionalities

Service Registration	n Load Balancing		A	Pl Gat	ceway	y	
Service Registration	TCP/UDP Forwarding Service requests statistics an				s and a	nalysis	
Service Discovery	FTP Forwarding	Pluggable Architecture					
Service Change Notification	HTTP/HTTPS Forwarding	Trans	Flov	Rate	Circuit	Auth	Other
Service Status Change Notification	WEB Socket Forwarding	Flow tagging Transformation		E Limitin	it Breaker	Authentication	r Plug-in
Service Healthy Check	Route dynamically update			ing			

THELINUX FOUNDATION

MSB Overview-Components

Registry

Service information storage, MSB uses Consul as the service registry.

• MSB Discovery

Provides REST APIs for service discovery and registration

• API Gateway

Provide service request routing, load balancing and service governance. It can be deployed as external Gateway or Internal Gateway.

• MSB SDK

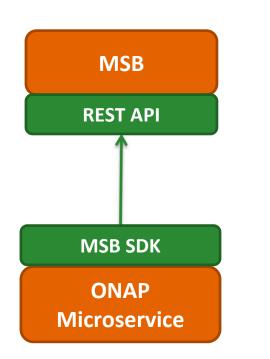
Java SDK for point to point communication

THELINUX FOUNDATION

5

Service Registration-Information Model

{	Attribute	Description
"serviceName": "catalog",	serviceName	Service Name
<pre>"version": "v1", "url": "/api/catalog/v1",</pre>	version	Service Version
"protocol": "REST",	url	the actual URL of the service to be registered
"visualRange": "1",	protocol	supported protocols: 'REST', 'UI', 'HTTP','TCP'
<pre>"lb_policy":"ip_hash", "nodes": [{ "ip": "10.74.55.66", "port": "66666", "ttl": 0 }, { "ip": "10.74.56.36", "port": "8988", "ttl": 0 }]</pre>	visualRange	Visibility of the service. External(can be accessed by external systems):0 Internal(can only be accessed by ONAP microservices):1
	path	The customized publish path of this service. If path parameter is specified when registering the service, the service will be published to api gateway under this path. Otherwise, the service will be published to api gateway using a fixed format: api/{serviceName} /{version}. The customized publish path should only be used for back-compatible.
	lb_policy	Load balancing method, Currently two LB methods are supported, round-robin and ip-hash.
	enable_ssl	True if the registered service is based on https. False if the registered service is based on http.
}	nodes	ip: the ip of theservice instance node port: the port of the service instance node ttl: time to live, this parameter is reserved for later use


Service Registration-RESTFul API

http method: POST url: http://{msb_ip}:{msb_port}/api/microservices/v1/services

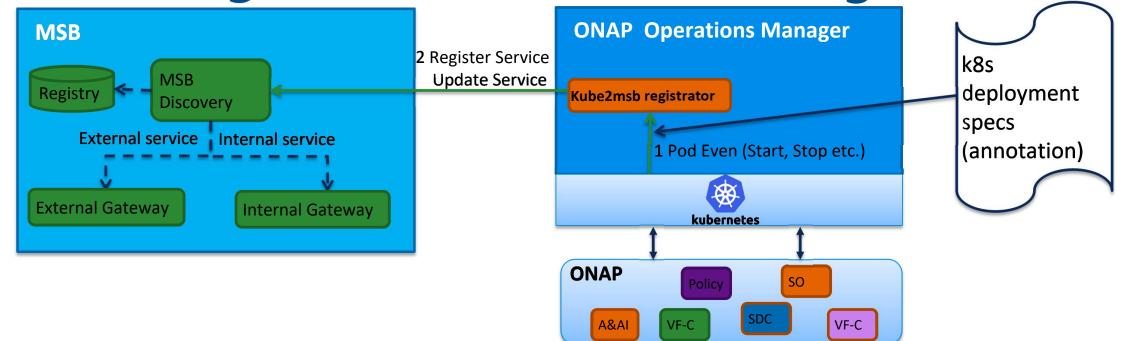
```
Example:
curl -X POST \
    -H "Content-Type: application/json" \
    -d '{"serviceName": "policy-pdp", "version": "v1", "url": "/pdp", "protocol": "REST", "lb_policy": "round-
    robin","nodes": [ {"ip": "10.43.190.127","port": "8081"}]}' \
    "http://10.43.186.85:10081/api/microservices/v1/services"
Exposed url: http://10.12.5.70/api/policy-pdp/v1
                                                                                      Multiple end points can be
                                                                                      exposed for one service.
curl -X POST \
    -H "Content-Type: application/json" \
    -d '{"serviceName": "policy-pdp-deprecated", "version": "v1", "url": "/pdp", "path": "/pdp", "protocol": "REST",
    "lb_policy":"round-robin","nodes": [ {"ip": "10.43.190.127","port": "8081"}]}' \
    "http://10.43.186.85:10081/api/microservices/v1/services"
Exposed url: http://10.12.5.70/pdp
```

Service Registration-MSB SDK

Microservices can use MSB SDK to register themselves to MSB.

public void registerMsb() throws Exception {

```
//For real use case, MSB IP and Port should come from configuration
//file instead of hard code here
String MSB_IP="127.0.0.1";
int MSB_Port=10081;
```


MicroServiceInfo msinfo = new MicroServiceInfo();

```
msinfo.setServiceName("animals");
msinfo.setVersion("v1");
msinfo.setUrl("/api/rpc/v1");
msinfo.setProtocol("REST");
msinfo.setVisualRange("1");
```

```
Set<Node> nodes = new HashSet<>();
Node node1 = new Node();
node1.setIp(InetAddress.getLocalHost().getHostAddress());
node1.setPort("9090");
nodes.add(node1);
msinfo.setNodes(nodes);
```

MSBServiceClient msbClient = new MSBServiceClient(MSB_IP, MSB_Port);
msbClient.registerMicroServiceInfo(msinfo, false);

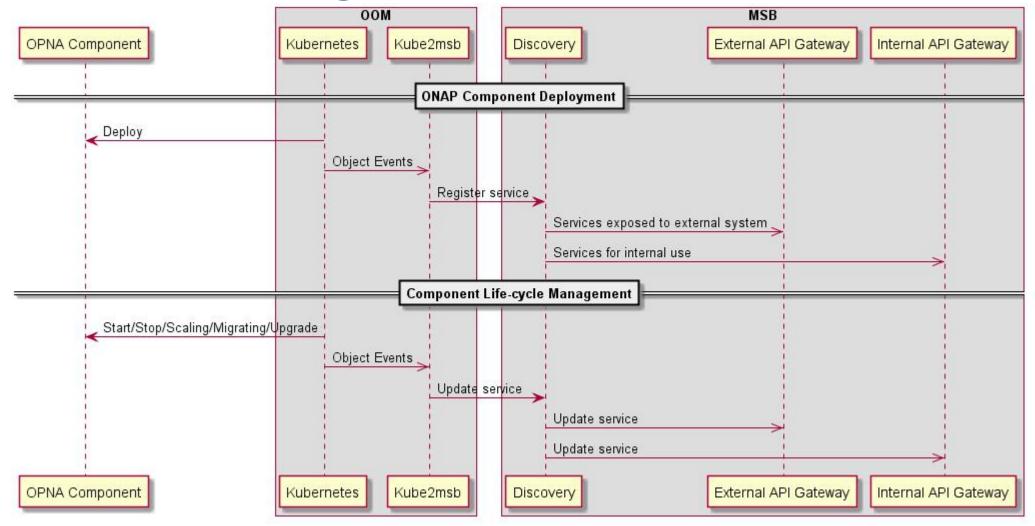
Service Registration-Kube2msb Registrator

Kube2msb registrator can register service endpoints for the microservices deployed by OOM

- OOM(Kubernetes) deploy/start/stop ONAP components.
- Registrator watches the kubernetes pod event .
- Registrator registers service endpoint info to MSB. It also updates the service info to MSB when ONAP components are stopped/restarted/scaled by OOM
 THELINUX FOUNDATION

Kube2msb Registrator-Service configuration

Use Kubernetes annotations to attach service endpoint metadata to objects.


Service endpoint can be defined at Pod level or Service level

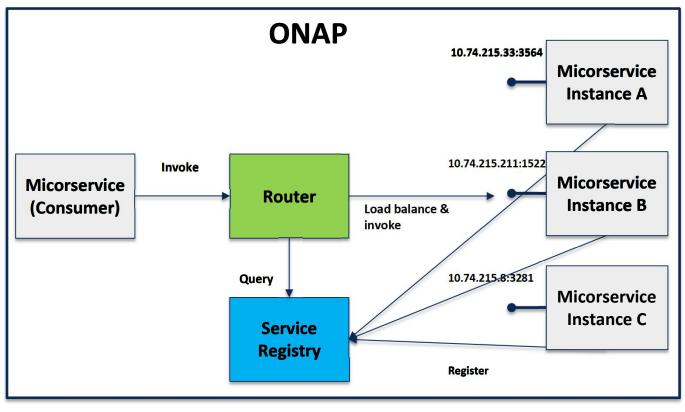
Pod level: leverage the LB capabilities of MSB to distribute requests to multiple pods

Service level: MSB send the request to service(Cluster IP), K8s dispatch the request to the backend Pod

```
apiVersion: vl
                                                          Register at service level
kind: Service
metadata:
                                                              Pod
 name: aai-service
                                                                                      Register
  annotations:
                                                                                                   MSB
                                                                            Service
    msb.onap.org/service-info: '[
                                                              Pod
          "serviceName": "aai-cloudInfrastructure",
          "version": "v1",
          "url": "/cloud-infrastructure",
                                                          Register at pod level
          "protocol": "REST",
          "lb policy": "round-robin",
                                                              Pod
          "visualRange":"1",
                                                                         Register
                                                                                                   MSB
          "enable ssl":"False"
                                                              Pod
      },
```

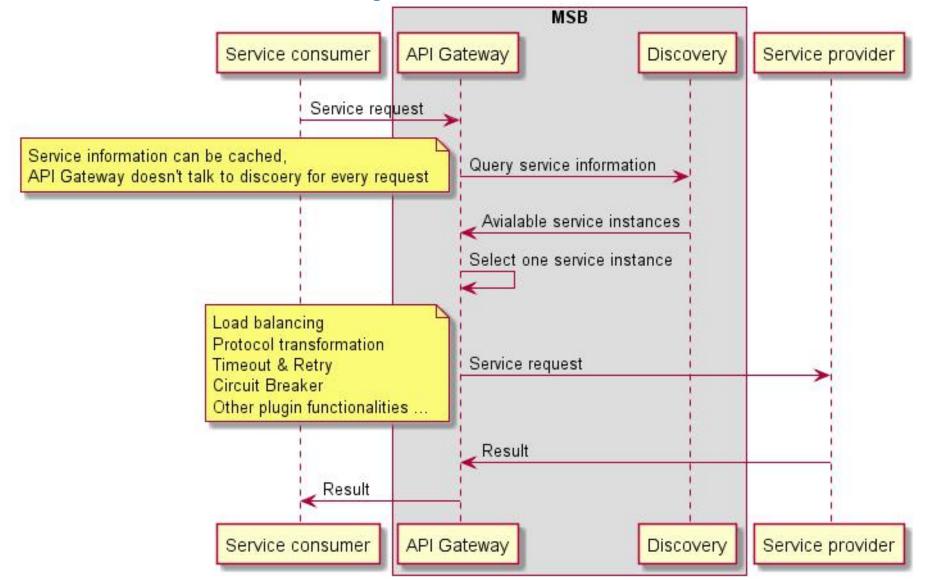
Kube2msb Registrator-flow chart

THELINUX FOUNDATION


11

Service Discovery-Server Side Discovery

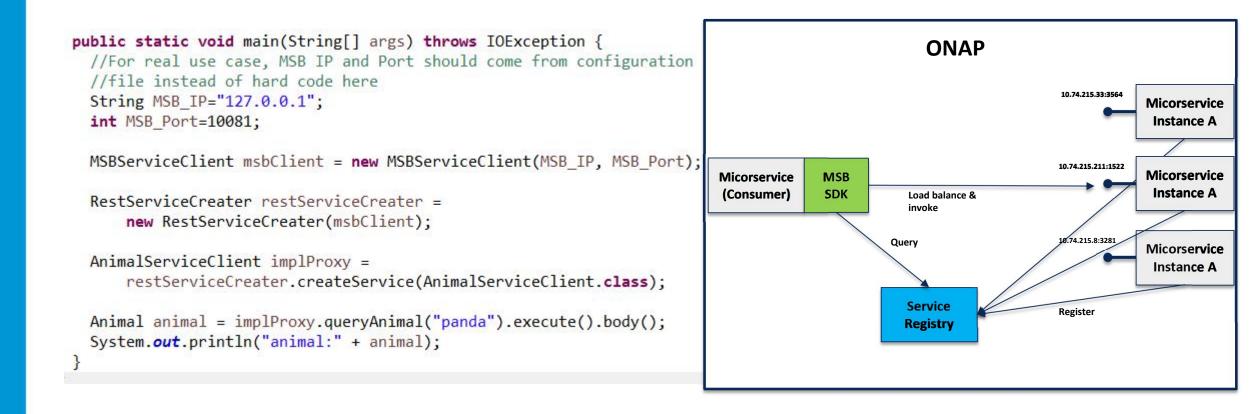
•Compared to client-side discovery, the client code is simpler since it does not have to deal with discovery. Instead, a client simply makes a request to the router.


•One more network hop is required than when using client-side discovery

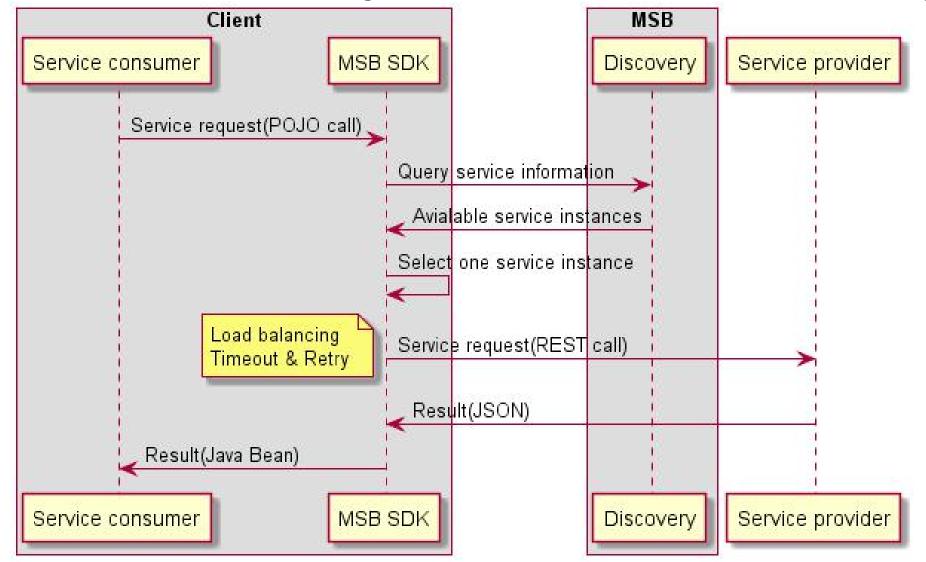
Example: Curl http://msb_ip:msb_port/api/sdc/v1/catalog/resources

THELINUX FOUNDATION

Service Discovery-Server Side Discovery



THELINUAFOUNDATION


13

Service Discovery-Client Side Discovery

Microservices can use MSB SDK to discovery and access other microservices within ONAP.

Service Discovery-Client Side Discovery

THELINUX FOUNDATION

Example & Demo-Without OOM

□ Start MSB services

1. Run the Consul dockers. sudo docker run -d --net=host --name msb_consul consul:0.9.3

2. Run the MSB dockers. Login the ONAP docker registry first: docker login -u docker -p docker nexus3.onap.org:10001

sudo docker run -d --net=host --name msb_discovery nexus3.onap.org:10001/onap/msb/msb_discovery
sudo docker run -d --net=host -e "ROUTE_LABELS=visualRange:1" --name msb_internal_apigateway
nexus3.onap.org:10001/onap/msb/msb_apigateway

Explore the MSB portal. http://127.0.0.1/msb

□ Register and test your REST service with MSB via curl

For more information, please visit: <u>https://wiki.onap.org/display/DW/MSB+Test+Environment+Setup</u>

Example & Demo-Within OOM

D Precondition

Have kubernetes cluster, kubectl and helm installed. Login the ONAP docker registry first: docker login -u docker -p docker nexus3.onap.org:10001

Download oom from ONAP gerrit

git clone https://gerrit.onap.org/r/oom

□ Install MSB and Kube2MSB registrator

cd ~/oom/kubernets/config ./createConfig.sh -n onap cd ~/oom/kubernetes/oneclick/ ../createAll.bash -a msb -n onap ./createAll.bash -a kube2msb -n onap

□ Install Policy for testing ./createAll.bash -a aai-n onap

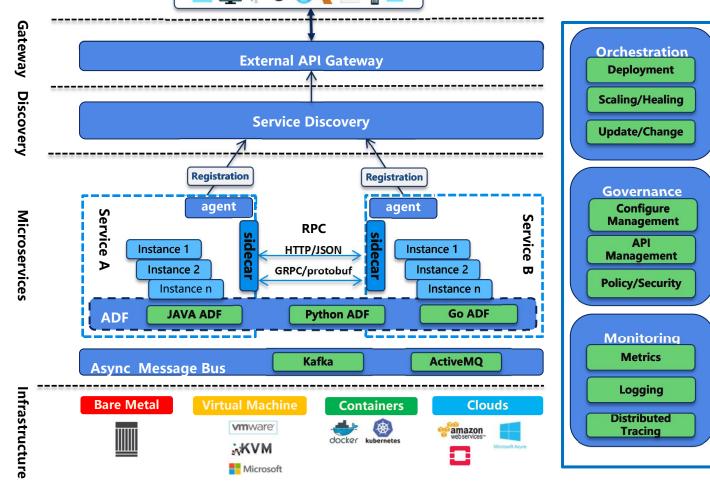
Open the MSB IAG portal in the browser

You are able to see the registered AAI services at http://\${Node_IP}:30080/msb THELINUX FOUNDATION

Suggested integration approach-minimum impact to existing codes

□ Automatically MSB registration by OOM Kube2MSB

□ Using swagger to describle the REST APIs and integrated with MSB portal


Access services via MSB Internal API Gateway

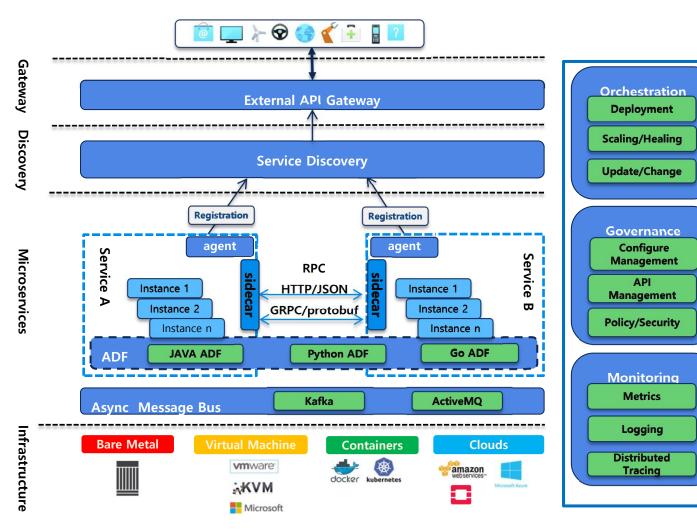
Follows the standard URI structure http://[host]:[port]/api/{service name}]/v{version number}/{resource}

https://wiki.onap.org/display/DW/RESTful+API+Design+Specification

Use an environment vriables to pass the MSB address(IP/DNS:Port) to the application Such as MSB_ADDR=msb-iag.onap-msb:80

The way going forward-OMSA (ONAP Microservice Architecture)

OMSA is the vision of ONAP Microservice Architecture to support carrier-grade requirements of ONAP microservices, which includes service registration/discovery, service communication, API gateway, service orchestration, service governance and service monitoring, etc.


Next step: Investgate Istio service mesh and integrate Istio into OMSA when it's production ready.

THELINUX FOUNDATION Note: this diagram is a functional view of OMSA, which is not mapped to specific projects

Backup slides

THELINUX FOUNDATION

OMSA-ONAP Microservice Architecture

OMSA is the vision of ONAP Microservice Architecture to support carrier-grade requirements of ONAP microservices, which includes service registration/discovery, service communication, API gateway, service orchestration, service governance and service monitoring, etc.

Note: this diagram is a functional view of OMSA, which is not mapped to specific projects