
Support for Test Topology Auto Design – SDC Enhancement

ONAP G release

Yan Yang, Lei Huang, Keguang He (China Mobile)

NE Testing: Reality

• The NE testing process is usually divided into four steps: test topology design, test environment setup, task execution and
result analysis and certification.

Test Topology Design Test Environment Setup Test Task Execution Test Result Analysis & Certification

The tester, the network
element manufacturer
support personnel, and
the test instrument
engineer negotiate the
test topology on site.

Manually record test
results, and confirm
the test results by
3rd parties.

•Deploy the test env
•Configure the NE
•Configure the test
Monitoring and
recording.

Manually troubleshoot
instrument and
network element
failures.

Weeks Months Months Weeks

• Changes after the introduction of NFV

Introduction
of open
source

components

Introduction
of software
component

disaggregation

The frequency
for software

upgrades

Introduction
of new

function and
service

Automated
Testing

At least 6 months are required for an NF to get a new or renewed network access permit.

NFV Testing Automation with OVP+ONAP

Test Topology
Auto Design

Days-Weeks Minutes-Hours Minutes-Hours Weeks

template

a b c

workflow

Infra

NFVO

VNFM

VIM

Infra

Test
execution

Test tools
integration

test
script

integration

result

Function mapping with ONAP components
•Test Topology Design - ONAP SDC
•Test Environment Deploy - ONAP Orchestrator(SO, VF-C, APPC , A&AI, etc)
•Test Task Execution - ONAP VTP(VNFSDK+CLI)
•Test Result Certificate - OPNFV OVP

NFV Testing Automation DevOps

ONAP SDC ONAP Orchestrator ONAP VTP OPNFV OVP

Test Environment
Auto Deploy

Test Task
Auto Execution

Test Result

Auto Analysis & Certification

Support for Test Topology Auto Design

• Goal: To achieve a more flexible NFV automated test platform, ONAP-based NFV automatic testing platform provides a
quick test service(topology) design composed of tested VNF and test environment, as well as supports the import and
reuse test service(topology) between different test environments.
• Current situation: At present, the service design need to be repeated for each VNF / test vendor, resulting in duplication,
complexity, and also reduce efficiency.
• Possible solution: Define abstract testing service (topology) template for each type of VNF

• Enhance SDC to support:
1.For the service designed, can be
imported into SDC for modification or
enhancement, or the test template can
be reused for different test environments
(the SDC needs to support service
import);
2. Quickly design a test service (topology)
composed with tested VNF and test
environment (One way is to introduce the
concept of abstract template to simplify
the process of repeated design of test
service(topology)).

Template
instantiation

Template
instantiation

Abstract service topology

Support for Test Topology Auto Design- Possible Workflow (Service import)

Support for Test Topology Auto Design- Possible Workflow (Abstract
service template)

• Add a button “IMPORT SERVICE CSAR" to perform service CSAR import.

Service import - Changes in SDC Portal

• When clicking the “IMPORT SERVICE CSAR” button on the portal, a window will pop up to select
the service CSAR file to be imported.

Service import - Changes in SDC Portal

• After selecting the service CSAR file to be imported, it will switch to the general information input
page for creating the service.

Service import - Changes in SDC Portal

• After filling in all the required fields, you can click the "create" button to create a
new service.

Service import- Changes in SDC Portal

Service import - Changes in SDC BE

• ServiceServlet.java

Add a new API for the request of importing service CSAR.

Post:

/v1/catalog/services/importService

Define the UploadServiceInfo class to receive the service CSAR package uploaded by the portal
and the general information filled in from the portal.

• ServiceImportBusinessLogic.java

Including all processing logic codes for creating service.

➢Analyze and verify the uploaded CSAR file.

➢Parsing Tosca template file to get the corresponding contents of inputs, node_templates, instances,
groups and so on respectively.

➢Create a new service based on the above parts.

• Add support for service type in the following related code.

CsarArtifactsAndGroupsBusinessLogic.java YamlTemplateParsingHandler.java

ComponentBusinessLogic.java

ServiceBusinessLogic.java

CsarUtils.java ToscaOperationFacade.java ……

Service import - Changes in SDC BE

• A new service is generated in SDC.

Service import - Result

Abstract service template - Changes in SDC Portal

• On the general page of VF, add a IS_ABSTRACT_RESOURCE selection box, which is
false by default. If it is an abstract VNF, select true manually.

• Add three APIs to handle the corresponding requests of abstract service template.

➢Return whether the service is a abstract service:
GET /v1/catalog/abstract/service/serviceUUID/{uuid}/status

➢Copy a new service based on the existing service:
POST /v1/catalog/abstract/service/copy

➢Replace the abstract VNF in the abstract service template with the actual VNF:
PUT /v1/catalog/abstract/service/replaceVNF

We will use automated interfaces to replace the original manual implementation process.

Abstract service template - Changes in SDC BE

• The requirements and related changes are relatively independent from
existing functions in SDC, they will not affect other functions in SDC,
just enhancement and complement.

• Changes in SDC Portal
- Abstract service template

On the general page of VF, add a IS_ABSTRACT_RESOURCE selection box, which is
false by default. If it is an abstract VNF, select true manually.

- Service import

1. Add a button “IMPORT SERVICE CSAR" to perform service CSAR import.

2. When clicking the “IMPORT SERVICE CSAR” button on the portal, a window will pop up
to select the service CSAR file to be imported.

3. After selecting the service CSAR file to be imported, it will switch to the general
information input page for creating the service.

4. After filling in all the required fields, you can click the "create" button to create a new
service.

Summary- SDC changes in automatic testing requirement (Portal)

• Changes in SDC BE
- Abstract service template

Add three APIs to handle the corresponding requests of abstract service template.

(1) Return whether the service is a abstract service:
GET /v1/catalog/abstract/service/serviceUUID/{uuid}/status

(2) Copy a new service based on the existing service:
POST /v1/catalog/abstract/service/copy

(3) Replace the abstract VNF in the abstract service template with the actual VNF:
PUT /v1/catalog/abstract/service/replaceVNF

We will use automated interfaces to replace the original manual implementation process.

- Service import

1. Add a new API for the request of importing service CSAR.

Post: /v1/catalog/services/importService

Define the UploadServiceInfo class to receive the service CSAR package uploaded by the portal and the
general information filled in from the portal.

2. Including all processing logic codes for creating service.

3. Add support for service type in the following related code.

Summary- SDC changes in automatic testing requirement (SDC BE)

Conclusion of service import discussion- part1(use case)

• Process:

➢ Step 1: Create and design Service1 in SDC1

➢ Step 2 : Export Service1 csar package created in SDC1

➢ Step 3: Import Service1 csar package to SDC2

SDC1 SDC2

Test Environment1 Tests Environment2

Service Import

Service1 Service1

Test framework
（with specific test

case/scripts）

ONAP Runtime
Component

Test
Instrument/Tools

Test framework
（with specific test

case/scripts）

ONAP Runtime
Component

Test
Instrument/Tools

• Support for service import: Service csar package exported from one SDC can be re-imported to another

SDC

Conclusion of service import discussion- part2 (illustration)

• Premise: The data type of different SDC environments are keep in sync.

• Support for features:

➢ VNF features;

➢ Contents of inputs, node_templates, instances, groups , etc.

➢ Substantiation mapping (tentative support)

• Verify if the service imported in different SDC environment are equal:

➢ Consider comparing services manually (e.g. use Beyond Compare, etc.);

➢ OR create automatic comparison process (in terms of SDC’s suggestion).

Remaining issues- solution plan

• Solution for datatype challenge:

➢A: We’ve explained the usecase of service import from one SDC to another, the
data type of different SDC environments are keep in sync, so the data type can be
supported in SDC.

• Can abstract template definition reuse category field:

➢ A: We think it’s OK to reuse the Abstract category.

Remaining issues- solution plan

• Select which field to judge whether VF exists:

➢ A: Now we use the field type, we also can combine the fields such as
type and category to judge

