
ONAP Policy Framework
Frankfurt – Overview
Pamela Dragosh – PTL

June 2020



• Policy Framework Project
- Active project since ONAP inception and the Amsterdam Release

- https://wiki.onap.org/display/DW/Policy+Framework+Project

- Team meets every Wednesday in a shared meeting with the CLAMP 
project.

Overview

2

https://wiki.onap.org/display/DW/Policy+Framework+Project


• Since Dublin, the project has re-designed and re-built the Policy 
Framework components.
- Clear separation of Policy Design and implementation

• Use of TOSCA Policy Syntax
- 3 sets of API’s

• Policy Lifecycle API for performing the CRUD
• Policy Administration API for managing PDP groups and deploying policies to PDPs
• Decision API for ONAP components to use to render decisions on which policy(s) to 

enforce
- 6 Lightweight, scalable microservices that make up the Platform

• API and PAP
• Policy data is managed in a MariaDb

• 3 PDPs: XACML, Drools, Apex
• Drools requires a nexus database to be available

• Distribution component that receives SDC Service Distributions

History

3



• Flexibility and extensibility
- Pick and choose the PDP (Policy Decision Point) to use for your use case

• Ability to build your own PDP if desired
- Design your own Policy Types and create your own applications that 

translate/implement those Policy Types
- Configure SDC distribution to automate lifecycle API and PAP API

• Frankfurt full integration with the following ONAP components was 
completed:
- CLAMP: control loop policies
- DCAE: control loop monitoring policies
- OOF: optimization policies
- SDNC: naming policies

History continued

4



Policy Execution at Highest Level

5



Abstract View of the Architecture

6



• Lifecycle API
- RESTful CRUD API – used by Policy Designers
- Policy Designers perform lifecycle for Policy Types and their Policies
- Implemented in the Policy API component: policy/api
- This API should NOT be used by runtime components to retrieve their policies. Only the 

Decision API should be used by runtime components to return policies are to be enforced 
based on conditions.

• Administration API
- RESTful CRUD for Grouping PDPs and deploying policies to PDPs – used by DevOps team
- Implemented in the Policy PAP component: policy/pap
- The Policy PAP component is also responsible for Dmaap notifications of Policy deployment 

changes, to enable ONAP components option to dynamically update the policy they are 
enforcing

• Decision API
- Simple REST POST to query for decisions
- Runtime Decisions for both ONAP components and Policy PDP’s
- Implemented in the Policy XACML PDP component: policy/xacml-pdp

Policy API’s – 3 sets of RESTful API’s

7



• Policy has a distribution component capable of receiving to SDC 
Service distributions
- The distribution component is fully configurable and integrated with the 

latest lifecycle and pap API’s
- Users can configure the distribution component to automate the creation 

and deployment of policy types and their policies when a service is 
distributed

- Implemented in the policy/distribution component
- https://onap-doc.readthedocs.io/projects/onap-policy-

parent/en/frankfurt/distribution/distribution.html

Policy Distribution

8

https://onap-doc.readthedocs.io/projects/onap-policy-parent/en/frankfurt/distribution/distribution.html


• Apex PDP
- Adaptive chained state-machine driven solution

• Drools PDP
- BPMN-based Drools Rules
- Can utilize a nexus repo for storage/retrieval of Drools Rules and Java 

artifacts supporting those Rules
• XACML PDP

- Implements the Decision API
- Fine-grained attribute-based question/answer decision making

Policy PDP’s – 3 PDPs available

9



PDP Execution – from a logical view

10



• These Policy Types are supported by the XACML PDP
- Monitoring Policy Types supported by DCAE collectors/analytics

• tca (threshold crossing), datafile-app-server
• Used in Control Loops
• Integrated with CLAMP/DCAE

- Guard Policy Types for protection regarding Control Loop operations
• Blacklist, frequency limiters, min/max, coordination
• Used in Control Loops (optional)
• Integrated with CLAMP

- Optimization Policy Types for OOF Services
• All inherit from service and resource specific policy types
• Affinity, distance, hardware placement, optimization algorithm, VIM fit, vnf, pci, query, 

subscriber
- Naming Policy Types for SDNC Naming Services

What Policy Types are available to use out-of-the box?

11



• Operational Policy Types for enforcement of Control Loop 
operations
- Used in Control Loops
- Both Drools and Apex support these policy types
- Integrated into CLAMP

• NOTE: Users can configure which Policy Types are pre-loaded in 
the policy/api component’s configuration file.
- See example config: 
- https://github.com/onap/policy-api/blob/frankfurt/packages/policy-api-

tarball/src/main/resources/etc/defaultConfig.json

What Policy Types are available to use out-of-the box?

12

https://github.com/onap/policy-api/blob/frankfurt/packages/policy-api-tarball/src/main/resources/etc/defaultConfig.json


• Located in the policy/models repository
• https://github.com/onap/policy-models/tree/master/models-

examples/src/main/resources/policytypes

Where can I see the Policy Types?

13

https://github.com/onap/policy-models/tree/master/models-examples/src/main/resources/policytypes


• These Policy Types support Control Loop implementation
- onap.policies.Monitoring
- onap.policies.controlloop.operational.Common

• Apex and drools extensions
- onap.policies.controlloop.guard.Common

• Frequency limiter, blacklist, min/max, and coordination

Control Loop vs Non-Control Loop Policy Types

14



• Yes!
• Some existing Policy Types can be extended and implemented by 

out-of-box ONAP framework
- onap.policies.Monitoring: For new DCAE collectors/analytics
- onap.policies.Optimization: For new extensions to OOF use cases

• For new Policy Types, you will need to build an application for the 
PDP you choose to use to support your Policy Type
- Each PDP has its own design for building applications to support a policy 

type
- Please see the in-depth video tutorials for each PDP

Can I Design my own Policy Type?

15



• That is up to the user to evaluate which PDP is preferable to use
• Each PDP has its own strengths and weaknesses
• Neither is better than the other, just a different way of 

accomplishing your solution
• Each PDP is used by various Use Cases in ONAP

- We encourage you to contact Use Case owners to determine why and how 
they use the PDP for their solution

Which PDP should I use?

16



• Yes!
• The interface between PDP’s that register with the PAP is available 

to implement for any developer
• Code is shared in policy/models repo
• There is a PDP simulator in the policy/models repo one can 

reference
• See any of the existing PDP’s as well as a PDP simulator code to 

get an understanding on how to create your own PDP

Can I build my own PDP?

17



• XACML applications can be built to support Policy Types that require an 
ONAP component to query the Decision API
- Simple question/answer Decisions to support an ONAP component to be policy-

driven
- “What policy(s) should my app enforce given these conditions?”
- Allows fine-grained attribute-based Policy Decisions
- There are standard policy translators available to use.

• Matchable: gives the user the ability to designate which properties are matched in a 
decision

• Combined: simple combination of all the ids or types of policies.
- Creating your own translator is possible as the design of the XACML PDP is 

extendible
- Best examples: monitoring, optimization, naming, guard Policy Types
- https://onap-doc.readthedocs.io/projects/onap-policy-

parent/en/frankfurt/xacml/xacml.html

How do I build an application for my own Policy Type?

18

https://onap-doc.readthedocs.io/projects/onap-policy-parent/en/frankfurt/xacml/xacml.html


• Drools applications can be built to support Policy Types that can 
work with the drools BPMN rules
- Maintains state
- Allows flexibility in writing rules and java artifacts to support those rules
- Applications are called “controllers” which can be configured to 

serialize/deserialize objects to/from Dmaap
- Best example: operational
- https://onap-doc.readthedocs.io/projects/onap-policy-

parent/en/frankfurt/drools/drools.html

How do I build an application for my own Policy Type?

19

https://onap-doc.readthedocs.io/projects/onap-policy-parent/en/frankfurt/drools/drools.html


• Apex applications can be built to drive a chain of adaptive states
- Apex is adaptive in that you each state can be fed by the previous state
- MEDA state model: Match Establish Decide Act
- ECA state model: Event Condition Action
- https://onap-doc.readthedocs.io/projects/onap-policy-

parent/en/frankfurt/apex/apex.html

How do I build an application for my own Policy Type?

20

https://onap-doc.readthedocs.io/projects/onap-policy-parent/en/frankfurt/apex/apex.html


• Policy Execution can mean different things
- Enforcement: an application must enforce policy(s)
- Decisions: a policy decision is made that returns either permit/deny or one 

or more policies that an application must enforce

What does Policy Execution Mean?

21



• The legacy GUI will be deprecated in Guilin and should not be 
used any longer.

• A POC that developed a PDP Monitoring GUI was done in 
Frankfurt and is available for evaluation
- Located in policy/gui repository
- https://onap-doc.readthedocs.io/projects/onap-policy-

parent/en/frankfurt/gui/Monitoring-GUI-Demo-Guide.html
• Long term roadmap is to re-build a new GUI to support Policy 

Lifecycle API and the Administration API

What about the GUI?

22

https://onap-doc.readthedocs.io/projects/onap-policy-parent/en/frankfurt/gui/Monitoring-GUI-Demo-Guide.html


• Documentation – is the starting place to get an understanding on 
the platform
- https://onap-doc.readthedocs.io/projects/onap-policy-

parent/en/frankfurt/index.html#master-index
• Codebase – is the starting place to understand how the code is 

built
- Be sure to checkout the frankfurt branch for code that was delivered in 

Frankfurt.

Where to get information

23

https://onap-doc.readthedocs.io/projects/onap-policy-parent/en/frankfurt/index.html


• Codebase – is the starting place to understand how the code is 
built
- policy/docker build the common base Policy docker images consumed by 

the Policy components
• https://github.com/onap/policy-docker

- policy/parent, policy/common and policy/models hold the base code 
shared by the other repos

• They produce java artifacts only
• https://github.com/onap/policy-parent
• https://github.com/onap/policy-common
• https://github.com/onap/policy-models

Codebase locations - common

24

https://github.com/onap/policy-docker
https://github.com/onap/policy-parent
https://github.com/onap/policy-common
https://github.com/onap/policy-models


- policy/api holds the Policy Lifecycle API
• Produces both java artifacts and docker images
• https://github.com/onap/policy-api

- policy/pap holds the Policy Administration API
• Produces both java artifacts and docker images
• https://github.com/onap/policy-pap

Codebase locations - api and pap

25

https://github.com/onap/policy-api
https://github.com/onap/policy-pap


- policy/apex-pdp, policy/drools-pdp and policy/xacml-pdp hold PDP code
• These repos produce both java artifacts and docker images
• https://github.com/onap/policy-apex-pdp
• https://github.com/onap/policy-drools-pdp
• https://github.com/onap/policy-xacml-pdp
• Both apex and xacml have application code in those repos
• policy/drools-applications holds drools application code, it also produces a docker 

image
• https://github.com/onap/policy-drools-applications

Codebase locations – pdp and their applications

26

https://github.com/onap/policy-apex-pdp
https://github.com/onap/policy-drools-pdp
https://github.com/onap/policy-xacml-pdp
https://github.com/onap/policy-drools-applications


- policy/distribution has the SDC distribution code
• This repo produces both java artifacts and a docker image
• https://github.com/onap/policy-distribution

- policy/gui has the Monitoring GUI code (evaluation only)
• This repo only produces java artifacts
• https://github.com/onap/policy-gui

Codebase locations – distribution and gui

27

https://github.com/onap/policy-distribution
https://github.com/onap/policy-gui

