


Pamela Dragosh

Policy Decisions and 
Enforcement



Agenda
• How to design a Policy Type

• Inheriting from out-of-box ONAP Policy Types that are already available

• How to create a new Policy Type that is new to the Platform.

• How to use the Policy Lifecycle API to load your Policy Type and create Policies.

• How to create an application in the XACML PDP to translate your Policy Type into a native 

policy for usage with the Policy Decision API.

• How to use the Policy Administrative API to push your policies to a running XACML PDP

• How to build enforcement into your application
• Using the Decision API during runtime to retrieve your policy decision.

• Responding to Dmaap Policy Notifications when a new Policy is available (or unavailable)



Policy Type Design
Design the Policy Type first and what you expect 
the policies to look like

There are many examples already available in ONAP to reference

https://github.com/onap/policy-models/tree/master/models-examples/src/main/resources

https://github.com/onap/policy-models/tree/master/models-examples/src/main/resources


Decision application building

XACML PDP Guilin Documentation
https://docs.onap.org/projects/onap-policy-parent/en/master/xacml/xacml.html

Clone the XACML PDP codebase
https://github.com/onap/policy-xacml-pdp/tree/master
Study the “applications” sub-module to see how the current set of applications are built.

Monitoring
Naming
Guard

Blacklist, Frequency Limiter, Min/Max, Filter (new to Guilin)
Optimization
Native (Frankfurt)
Match (new to Guilin)

https://docs.onap.org/projects/onap-policy-parent/en/master/xacml/xacml.html
https://github.com/onap/policy-xacml-pdp/tree/master


Continued…

Each application translates policies and responds to the 
Decision API appropriately. 
If your PEP has different needs from out-of-box, then 
you can build a custom XACML PDP Application.

Wish to add another layer of algorithm’s on top of XACML PDP engine decision.
Eg. Extend the existing translators or override some of their methods and change the behavior

Prefer to translate TOSCA Policies differently
Eg. Write your own translator

Desire to segregate “actions” into your own application
An “action” is used in the Decision API payload to forward a Decision request to an application.
Applications can have more than one action associated with their application



Implementation details
XacmlApplicationServiceProvider interface

• This is the interface that an application is required to implement
• The XACML PDP uses java.service to find implementations of this service interface to load into the PDP and 

make available
• StdXacmlApplicationServiceProvider is an implementation of this interface that performs a lot of common 

work that the packaged applications utilize.
• Strongly recommend using this interface and overriding methods as appropriate



Continued…
ToscaPolicyTranslator interface

Must be provided to the implementation of the XacmlApplicationServiceProvider for policy translation
There are some implementations available for use:

StdCombinedPolicyResultsTranslator – very basic, not recommended
StdMatchableTranslator – recommended, allows flexibility of attributes to be used in policy design

Possible to create your own translator if desired



Step #1 – build the decision app
Let’s see some code….

NOTE: Previous tutorials existing for Frankfurt
Code is uploaded into this wiki:
https://wiki.onap.org/pages/viewpage.action?pageId=84654893
Tutorial is documented in readthedocs and the code is available there as well

https://docs.onap.org/projects/onap-policy-parent/en/frankfurt/xacml/xacml-tutorial.html

https://wiki.onap.org/pages/viewpage.action?pageId=84654893
https://docs.onap.org/projects/onap-policy-parent/en/frankfurt/xacml/xacml-tutorial.html


Step #2 - testing
Docker Compose script

There is a docker-compose.yml script saved in the source code tar file:
src/main/docker/docker-compose.yml

To start it run these commands:
docker-compose -f src/main/docker/docker-compose.yml run --rm start_dependencies
docker-compose -f src/main/docker/ docker-compose.yml run --rm start_all

NOTE: You may have to tweak the script to get it running in your environment.

MariaDb

Dmaap simulator
• For Guilin, the policy team now builds a version for developer testing use



Continue…
Docker Compose script

docker-compose -f src/main/docker/ docker-compose.yml run --rm start_all

This will start the api and the pap



Step #3 – deploy policies
Some derived policy types can be automatically 
deployed
• onap.policies.monitoring.*
• onap.policies.optimization.*
• onap.policies.match.*

For new/custom Policy Types, you must declare it 
as supported in your PDP group



Step #4 – build enforcement app
Current ONAP components that are PEP’s (Policy 
Enforcement Points):

DCAE analytics/collectors – support Monitoring Policy Types
OOF – support Optimization Policy Types
SDNC – support Naming Policy Types



What code do I need to develop?

Your application should be able to make a RESTful API call
Your application should be able to parse the JSON payload 
of the RESTful API call
If your application needs notification of a policy change, it 
should be able to connect to Dmaap to receive Policy 
Update notifications
Is there an SDK in Policy to support this?

Not exactly an SDK, but Java-based applications can use our java artifacts in our policy/common and policy/models repositories if they do not have 
code in their codebase that can perform RESTful API calls



Starting from scratch…
Eclipse can be used to build a new Java Maven 
application
Create an empty maven Java project

Ensure using JDK 11 for compilation as the Policy Framework only supports JDK 11

Find the latest ONAP Policy Frameworks java 
artifacts and Docker images by consulting our 
wiki page:

https://wiki.onap.org/display/DW/Policy+Framework+Project%3A+Component+Versions
This tutorial will use policy/common and policy/models java artifacts

https://wiki.onap.org/display/DW/Policy+Framework+Project%3A+Component+Versions


More information
Developer Documentation is located here:

https://docs.onap.org/projects/onap-policy-parent/en/master/development/development.html

https://docs.onap.org/projects/onap-policy-parent/en/master/development/development.html

