
READ THE DOCS
VNF REQ

https://wiki.onap.org/display/DW/VNFRQTS+How+to+Contribute
https://wiki.onap.org/display/DW/VNFRQTS+Requirement+and+Documentation+Sta
ndards

https://wiki.onap.org/display/DW/VNFRQTS+How+to+Contribute
https://wiki.onap.org/display/DW/VNFRQTS+Requirement+and+Documentation+Standards

https://gerrit.onap.org/r/#/dashboard/self

RST – Documentation as Code
SSH
Push Securely

https://gerrit.onap.org/r/#/dashboard/self

https://wiki.onap.org/display/DW/Configuring+Gerrit

https://wiki.onap.org/display/DW/Configuring+Gerrit

https://wiki.onap.org/display/DW/Setting+Up+Your+Development+Environment

GIT
GARRET REVIEW
PYTHON
TALKS

https://www.mediawiki.org/wiki/Gerrit/git-review#Windows

https://wiki.onap.org/display/DW/Setting+Up+Your+Development+Environment
https://www.mediawiki.org/wiki/Gerrit/git-review#Windows

INSTALL GIT

https://gitforwindows.org/

https://gitforwindows.org/

AFTER INSTALLING – Launch the GITBASH

INSTALL PYTHON

64-bit: https://www.python.org/ftp/python/2.7.10/python-2.7.10.amd64.msi

https://www.python.org/ftp/python/2.7.10/python-2.7.10.amd64.msi

https://www.python.org/ftp/python/2.7.10/python-2.7.10.amd64.msi
https://www.python.org/ftp/python/2.7.10/python-2.7.10.amd64.msi

Windows

Python is needed for git-review to function and pip is used for its installation:

Install Python or upgrade to the most current version of Python 2 or Python 3.
Important: Do not install Python in any directory with a space in its path as there is a pip bug (see [1]), use the

default, e.g. C:\Python34\
During the Python installation, manually select Add python.exe to Path
Otherwise, add your python scripts directory manually to the system path (Settings, Control panel, System,

Advanced system settings, Environment variables, User variables, Path; e.g. C:\Python34\;C:\Python34\Scripts\;).
Different directories in path are delimited by a semicolon ";" only - do not add any whitespace to path list.)

Python 3.4 has pip already installed. Only if you have an older version, install pip by following the instructions here.
Run Git Bash as Administrator (right click on icon for this option) and install git-review with the following command:

$ pip install git-review

If you experience problems such as these:

Retrying (Retry(total=4, connect=None, read=None, redirect=None)) after connection broken by
'ConnectTimeoutError(<pip._vendor.requests.packages.urllib3.connection.VerifiedHTTPSConnection object at
0x03B55750>, 'Connection to pypi.python.org timed out. (connect timeout=15)')': /simple/git-review/

try running:

$ pip install git-review --proxy=www-proxy-lon.uk.oracle.com:80

the exact proxy to use can be extracted from http://wpad/wpad.dat file.

To use git review, you have to be in a git clone directory that already contains a (possibly hidden) .gitreview
configuration file (see Gerrit/Advanced usage#Setting up a repository for git-remote)

For the python path issue, if you are using windows, you need to explicitly add it to your
path (if you didn’t check the box to do it for you when you installed python). You can
follow this which would show you how to do so: https://geek-university.com/python/add-
python-to-the-windows-path/

LOOK IN YOUR PATH AFTER INSTALLATION

https://geek-university.com/python/add-python-to-the-windows-path/

INSTALL GIT-REVIEW

SETUP SSH KEY

SETUP SSH KEY

https://www.mediawiki.org/wiki/Gerrit/git-review#Windows

https://www.mediawiki.org/wiki/Gerrit/Tutorial#Set_Up_SSH_Keys_in_Gerrit

https://www.mediawiki.org/wiki/Gerrit/git-review#Windows
https://www.mediawiki.org/wiki/Gerrit/Tutorial#Set_Up_SSH_Keys_in_Gerrit

RUN THE PIP INSTALL GIT-REVIEW IN THE GIT BASH

RUN THE PIP INSTALL GIT-REVIEW COMMAND

RUN THE GIT REVIEW -S COMMAND

SETUP SSH KEY

(Accept carriage return)

(Put in a password)

(Verify that the id_rsa.pub exists in .ssh directory)

COPY SSH KEY

Generate a new SSH key
To generate a new SSH key, enter the command below and replace gerrituser@example.com with your own email address. We want the default settings
so when asked to enter a file in which to save the key, just press enter.
Output of the ssh-keygen command
ssh-keygen -t rsa -C "gerrituser@example.com"
Enter a strong and unique passphrase and press the [Enter] key.

Why do passphrases matter?
Passwords aren’t very secure. If you use one that’s easy to remember, it’s easier to guess or brute-force. If you use one that’s random it’s hard to remember, so you might write the password down. Both are very bad.
This is why you’re using ssh keys. But using an ssh key without a passphrase is basically the same as writing down that random password in a file on your computer. Anyone who gains access to your drive has gained
access to every system you use that key with. That's why you also add a passphrase. To not enter a long passphrase every time you use the key, there’s a tool called ssh-agent. It can save your passphrase securely. If
you use macOS or Linux, then your keys can be saved in the system’s keychain to make your life even easier.

The ssh-keygen command will create 2 files in ~/.ssh directory:
•~/.ssh/id_rsa : your private SSH key (for identification)
•~/.ssh/id_rsa.pub : your public SSH key

Copy your SSH Public key
Get the content of your public key file (e.g. id_rsa.pub) to copy it to your clipboard:
One option is to open your public key file with your favorite text editor (Notepad, TextEdit, gedit, etc). In the file chooser dialog of your text editor, you
may need to turn on “View hidden files” to find the file, because the .ssh directory is hidden. Sometimes the “View hidden files” option is available by
right-clicking in the file chooser dialog.
Other options are:
•On Linux, run cat ~/.ssh/id_rsa.pub and manually copy the output to the clipboard.
•On Windows, you can open Git GUI, go to Help 🡒 Show Key, and then press "Copy To Clipboard" to copy your public key to your clipboard.
•
It’s important you copy your SSH Public key exactly as it is written, without adding any newlines or whitespace. Copy the full text, including the "ssh-rsa"
prefix, the key itself, and the email address suffix.

SETUP SSH KEY

https://en.wikipedia.org/wiki/en:Passphrase
https://en.wikipedia.org/wiki/en:Brute-force_attack

Add SSH Public key to your Gerrit account

Log into the web interface for Gerrit https://gerrit.wikimedia.org/ http://gerrit.onap.org
The username and password for your Gerrit are the same as for your Wikimedia Developer account.
https://www.mediawiki.org/wiki/Gerrit/Tutorial#Create_a_Wikimedia_Developer_account
Click on your username in the top right corner, then choose "Settings".
Click "SSH Public Keys" in the menu on the left.
Paste your SSH Public Key into the corresponding field and click "Add". Add SSH Private key to use with Git

SETUP SSH KEY

https://gerrit.wikimedia.org/
http://gerrit.onap.org/
https://www.mediawiki.org/wiki/Gerrit/Tutorial#Create_a_Wikimedia_Developer_account

LOGIN TO GERRIT

Log into the web interface for Gerrit https://gerrit.wikimedia.org/

LOG ONTO GERRIT WEB INTERFACE

Hit Settings

https://gerrit.wikimedia.org/

SSH Public
Keys

GO TO SETTINGS > SSH PUBLIC KEYS

Add SSH Public key to your Gerrit account
Click on your username in the top right corner, then choose "Settings".

Click "SSH Public Keys" in the menu on the left.
Paste your SSH Public Key into the corresponding field and click "Add". Add SSH Private key to use with Git

Then hit ADD

Cut & Paste and your SSH Public
Key here (from the Git Bash)

SETUP SSH PUBLIC KEYS TO GERRIT

You should see your SSH KEY here

SETUP SSH PUBLIC KEYS TO GERRIT

Start the Git Bash command line.

Get ssh-agent running using

eval `ssh-agent`
Be sure to use the accent `, not the single quote '. (You could copy and paste from this page if you cannot easily enter this special character.)

Add your private key to the agent.[1] If you followed the steps above and your key has the default name id_rsa, then the command is:

ssh-add .ssh/id_rsa

Connect to the Gerrit server via ssh to check if everything works as expected. Replace gerrituser by your username as shown in your Gerrit settings:

ssh -p 29418 gerrituser@gerrit.wikimedia.org

Be paranoid and compare that the "RSA key fingerprint" is the same as the SSH fingerprint for gerrit.wikimedia.org:29418. If it is the same, answer
"Yes" to "Are you sure you want to continue connecting?". Then enter the passphrase for your key.

You should get a message "Welcome to Gerrit Code Review". The last line should show "Connection to gerrit.wikimedia.org closed."
If you run into problems, use ssh -p 29418 -v gerrituser@gerrit.wikimedia.org (replace gerrituser by your username). The -v will provide verbose

output to help find problems. Then read Gerrit/Troubleshooting.
An example Gerrit SSH connection success message looks like this:

ADD PRIVATE KEY TO AGENT

ADD PRIVATE KEY TO AGENT

Run eval `ssh-agent` command

Run ssh-add .ssh/id_rsa

Run ssh –p 29418 userid@gerrit.Wikimedia.org

CREATE JIRA TICKET

OPEN GERRIT REVIEW

CLONE REPOSITORY

& MAKE FILE CHANGE

Master branch (latest)
Every other branch (Beijing, Amsterdam)
Working on Master branch

https://wiki.onap.org/pages/viewpage.action?pageId=71834216

CD to ~/integration
CD to docs directory
VI EDIT THE DOCUMENT (RST FILE)

Changing REQUIREMENTS – need to Generate the Requirement ID Numbers

REQUIREMENT IDs

https://gerrit.onap.org/r/gitweb?p=vnfrqts/requirements.git;a=blob;f=docs/Chapte
r7/Configuration-
Management.rst;h=1259bc730a54575e64a5e4121ad37e35dec7256a;hb=refs/head
s/master

DOC VERIFICATION TOX

In that directory is a tox.ini
Pulls down requirement text file
Installs dependencies
Build website
The “read the docs”
Uses sphinx python doc generation plug-in

Yea so the pip install tox is just installing the ‘tox’ package.

Then the ‘tox -e docs’ command is building the documentation locally to test your changes.
I found some documentation on the ONAP wiki that might be helpful:
https://wiki.onap.org/display/DW/2017-09-19+Documentation+Tutorial
https://onap.readthedocs.io/en/latest/guides/onap-developer/how-to-use-docs/index.html

Once you’ve made the changes locally, you can follow this:
https://wiki.onap.org/display/DW/Pushing+Changes+Using+Git

BUT instead of doing a git push on step 4, you should do a ‘git review -s’ (just like you put
below, but you do the ‘git commit -s’ before the ‘git review -s’.

Yes, you can skip doing the ‘tox -e docs’, its mainly used to test your changes locally before
pushing them.

https://wiki.onap.org/display/DW/2017-09-19+Documentation+Tutorial
https://onap.readthedocs.io/en/latest/guides/onap-developer/how-to-use-docs/index.html
https://wiki.onap.org/display/DW/Pushing+Changes+Using+Git

Cloning Git Repostirories
The git clone command can be found on each project's gerrit page. For example, the project
page for appc is located here: https://gerrit.onap.org/r/#/admin/projects/appc
Use "Clone with commit-msg hook" option then use either the "http" or "ssh" option.
The "git clone...." command, located just below these options, can then be copied into your
command line
Making Commits
Use git add <file name> to stage changed files for commit
Commit the changes using: git commit -m "<name of the commit / first line of commit
message>"
git commit -s --amend will sign off the commit with your username and then will open up the
commit message editor

You will see a paragraph that contains the "Change-Id" and "Signed-off-by". Add a new line
to this paragraph with the following:
Issue-ID: <Jira issue id>
The capitalization of the "Issue-ID" text must be exact
The Jira issue id should match a valid Jira issue. For example "APPC-123" or "OOM-123"
are valid issue ids.
While the commit message editor is open, you can also add additional text to your commit
message if you want

To push the commit to gerrit, use the git push origin HEAD:refs/for/master command
Normally you should be pushing to master, but if you need to push to a branch other than
master, the "master" word can be replaced.
For example, if you're pushing to Dublin branch: git push origin HEAD:refs/for/dublin

https://gerrit.onap.org/r/#/admin/projects/appc

FILES ON LOCAL C: DRIVE

Git review –s
Git commit –s
[enter title]
[enter JIRA Ticket]

Git review

https://gerrit.onap.org/r/#/c/67839

https://gerrit.onap.org/r/#/c/67839

Yea can sync up again tomorrow. We were so close! But I think I
know the issue, there might be a few environmental files that we
need to change AND/OR it’s a proxy issue.

Hagop Bozawglanian

CHECK GLOBAL VARIABLES

CHECK GLOBAL VARIABLES

https://wiki.onap.org/display/DW/Configure+g
it+and+gerrit

Configure git and gerrit

Skip to end of metadata

Created by Rob Daugherty, last modified on Sep 23, 2017
Go to start of metadata

Basics

The recommended version of git is 2.7.4 or later. Check the installed version in the Ubuntu VM:

git --version

Create an SSH key to user with gerrit. Use no passphrase.

ssh-keygen -t rsa

Enter your SSH public key (id_rsa) into gerrit:

Browse to https://gerrit.onap.org

Log in

Open the menu next to your name (under the green search button)

Setsup garret repository for the change

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com
$ git config --global gitreview.username LFID

git clone ssh://bencheung@gerrit.onap.org:29418/vnfrqts/requirements

Git commit –s
(-s flag SIGNOFF

ssh -p 29418 gerrit.onap.org

Git review –s (initializes local repo)
Setup local repository w/ remote reposity
Git PULL
Git add
Git review

STORY JIRA

