
CNF Conformance v0.3
Dan Kohn, Executive Director
dan@linuxfoundation.org
or Slack to Dan Kohn at slack.cncf.io

© 2020 Cloud Native Computing Foundation2

Summary
• Many of the largest telecom operators have expressed

interest in evolving their Virtual Network Function (VNF)
infrastructure to enable Cloud native Network Functions
(CNFs) running on top of Kubernetes

• CNCF has run an extremely successful conformance
program called Certified Kubernetes that has achieved
adoption by over 90 organizations, including all cloud and
enterprise software providers

• Operators want to create a conformance program to
enable interoperability of CNFs from multiple vendors running
on top of Kubernetes supplied by a different vendor

Background

© 2020 Cloud Native Computing Foundation4

Cloud Native Computing Foundation
• Nonprofit, part of the Linux Foundation; founded Dec. 2015

• Platinum members:

Incubating

Service
Mesh

Storage

Service
Discovery

Graduated

Package
Management

Distributed
Tracing API

Messaging

Distributed
Tracing

Software
Update Spec

SecurityNetworking
APIOrchestration Network ProxyMonitoring

Registry Key/Value
Store

Policy Container
Runtime

Container
Runtime

Logging

Remote
Procedure Call

Key/Value
Store

Storage Serverless Container
Security

© 2020 Cloud Native Computing Foundation5

INNOVATORS
“TECHIES”

EARLY MAJORITY
“PRAGMATISTS”

LAGGARDS
“SKEPTICS”

“THE CHASM”

LATE MAJORITY
“CONSERVATIVES”

SANDBOX

GRADUATED

INCUBATING

EARLY ADOPTERS
“VISIONARIES”

SANDBOX

CNCF Project Maturities

Identity Spec Identity Tooling Metrics Spec Monitoring Image
Distribution

Nodeless Edge Scripting

Networking StorageTelemetry Spec Monitoring GitOps SecurityKafka
Operator

Packaging Spec

VM Operator Storage Storage

© 2020 Cloud Native Computing Foundation6

KubeCon + CloudNativeCon

kubecon.io

https://kubecon.io
https://events19.linuxfoundation.org/events/kubecon-cloudnativecon-europe-2020/
https://events.linuxfoundation.cn/kubecon-cloudnativecon-open-source-summit-china/
https://events.linuxfoundation.org/kubecon-cloudnativecon-north-america/

© 2020 Cloud Native Computing Foundation7

KubeCon + CloudNativeCon Attendance

© 2020 Cloud Native Computing Foundation8

Certified Kubernetes Conformance
• CNCF runs a software conformance

program for Kubernetes
– Implementations run conformance tests and

upload results
– Enables use of mark and more flexible use of

Kubernetes trademark for conformant
implementations

– cncf.io/ck

https://www.cncf.io/ck

© 2020 Cloud Native Computing Foundation9

96 Certified Kubernetes Partners

© 2020 Cloud Native Computing Foundation10

Kubernetes Architecture

“The entire system can now be described as an
unbounded number of independent asynchronous
control loops reading and writing from/to a
schematized resource store as the source of truth.
This model has proven to be very resilient,
evolvable, and extensible.”
- Brian Grant, co-chair emeritus, SIG-Architecture

https://twitter.com/bgrant0607/status/1111474959480549376?s=21

© 2020 Cloud Native Computing Foundation11

Why Organizations Are Adopting Cloud Native
1. Better resource efficiency lets you to run the same

number of services on less servers
2. Improved resiliency and availability: despite failures of

individual CNFs, machines, and even data centers
3. Cloud native allows multi-cloud (switching between

public clouds or running on multiple ones) and hybrid
cloud (moving workloads between your data center
and the public cloud)

4. Cloud native infrastructure enables higher development
velocity – improving your services faster – with lower risk

Cloud native Network Functions
(CNFs)

© 2020 Cloud Native Computing Foundation13

Cloud native Network Function (CNF) Definition

A cloud native network function (CNF) is a cloud
native application that implements or facilitates
network functionality. A cloud native network
function consists of one or more microservices, and
has been developed using Cloud Native Principles
including immutable infrastructure, declarative
APIs, and a “repeatable deployment process.”

https://github.com/cncf/toc/blob/master/DEFINITION.md

© 2020 Cloud Native Computing Foundation14

Evolution
• Physical Network Functions (PNFs) and Virtual Network Functions (VNFs)

are likely to be with us for at least another decade
• The only feasible approach for cloud native telecom is to offer an

evolution of PNFs and VNFs to become CNFs
• This mirrors how enterprises are moving their monoliths to Kubernetes and

then (often slowly) refactoring them into microservices
• For this to be economic, there need to be incremental gains in resiliency,

bin packing, and development velocity as more network functions
become cloud native

© 2020 Cloud Native Computing Foundation15

CNF Testbed
• What it is

– Open source initiative from CNCF
– Creates and deploys a complete telecom-ready

Kubernetes stack along with several open source CNFs
– Collaborating with CNCF Telecom User Group
– Runs on top of on-demand hardware from the bare

metal hosting company, Packet, but can be ported to
other environments

• Goals
– Testing and reviewing emerging cloud native

technologies in the telecom domain
– Funneling the new technology to early adopters
– Providing fully reproducible use cases and examples

BARE-METAL
SERVER

HARDWARE

NETWORK FUNCTIONS

#include

KUBERNETES

CONTAINERS

https://github.com/cncf/cnf-testbed

© 2020 Cloud Native Computing Foundation16

Network Labs (pets) vs. Repeatable Testbed (cattle)

• Networking equipment used to be separate hardware
boxes that needed to be integrated in a lab for testing

• Most network labs today are still a group of carefully
tended pets whose results cannot be reliably
reproduced

• Modern networking is mainly done in software that can
and should be checked into source control and
replicated at any time

• Network servers should be treated like cattle, not pets

© 2020 Cloud Native Computing Foundation17

The Importance of a Repeatable Testbed
• A key driver of the Kubernetes project’s robustness has

been the significant investment in continuous integration
(CI) resources
– Every pull request runs a large automated test suite
– On any given weekday, we run 10,000 CI jobs
– Every 2 days, we run a new scalability test of 150,000 containers

across 5,000 virtual machines
– Google provided CNCF a $9M grant of cloud credits to cover 3

years of testing and AWS has granted over $200k a year
• The CNF Testbed is a completely replicable platform for

doing apples-to-apples networking comparisons of CNFs

https://kubernetes.io/blog/2018/08/29/the-machines-can-do-the-work-a-story-of-kubernetes-testing-ci-and-automating-the-contributor-experience/
http://velodrome.k8s.io/dashboard/db/bigquery-metrics?panelId=10&fullscreen&orgId=1&from=now-6M&to=now
https://siliconangle.com/2018/08/29/google-opens-cloud-services-kubernetes-project-9m-grant/
https://cloud.google.com/blog/products/gcp/google-cloud-grants-9m-in-credits-for-the-operation-of-the-kubernetes-project

CNF Best Practices Ideas

© 2020 Cloud Native Computing Foundation19

Evolving from VNFs to CNFs

VNFs

Multi-Cloud and/or Bare Metal

VNF Architecture

Bare Metal Any Cloud

CNF Architecture

VNFs
CNFs

Kubernetes

KubeVirt/Virtlet/
OpenStack

MANO

OSS/BSS OSS/BSS

MANO

© 2020 Cloud Native Computing Foundation20

Not-So-Great CNFs
• Consider a physical firewall device that was ported to a VM to

become a VNF, but with no other changes
• When that firewall VNF is ported to become a CNF, it can no longer

carry custom kernel patches or kernel modules and must be
compatible with any kernel version 3.10 or higher (the minimum to
run Docker)

• This is a “lift-and-shift”
• But it can still include a number of sub-optimal patterns such as:

– Continued reliance on proprietary management interface
– Requires stateful storage and writes using a proprietary, opaque format
– No support for horizontal scalability (i.e., multiple instances)
– No support for ConfigMaps and environment variables
– Proprietary installer rather than offering a Helm chart

© 2020 Cloud Native Computing Foundation21

Gold CNFs
• We would like to work with operators and their vendors to define a set of best

practices around CNFs, which we could call gold CNFs. These might include:
– Compatible: They should work with any Certified Kubernetes product and any

CNI-compatible network that meet their functionality requirements
– Stateless: State should be stored in a Custom Resource Definition or a separate database

rather than requiring local storage
– Security: Run unprivileged
– Scaling: They should support horizontal scaling (across multiple machines) and vertical

scaling (between sizes of machines)
– Configuration and Lifecycle: via ConfigMaps/CRDs, Operators, or other declarative

interface
– Observability:

• Monitoring: All performance metrics previously available via a proprietary interface should
be shared via an OpenMetrics interface that Prometheus and other monitoring tools can use

• Tracing: Support OpenTelemetry-compatible tracing
• Logging: Support Fluentd-compatible logging

– Installable and Upgradeable: Such as via a Helm chart and/or Kustomize plugin
– Hardware support: Via device plugin

https://www.cncf.io/certification/software-conformance/
https://coreos.com/operators/
https://openmetrics.io/
https://opentracing.io/
https://www.fluentd.org/
https://helm.sh/
https://kustomize.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/

© 2020 Cloud Native Computing Foundation22

CNF Best Practices
• CNCF could offer a self-testing platform to demonstrate conformance

with best practices
• Not-So-Great CNFs likely have relatively few, if any, benefits over VNFs
• Gold CNFs will often require a complete re-architecture and so may not

be immediately available
• That would mean that the definition of a “bronze” or “silver” CNF may be

critical
• Operators may write into request for proposals (RFPs) a requirement for

silver CNFs and/or specific aspects of gold

CNF Conformance Plan

© 2020 Cloud Native Computing Foundation24

Goals
• Enable a thriving ecosystem of cloud native telecoms where

Cloud-native Network Functions (CNFs) from different vendors can
interoperate and run on top of the same cloud native infrastructure (i.e.,
Kubernetes)

• Provide an open source test suite to enable both open and closed
source CNFs to demonstrate conformance and implementation of best
practices

© 2020 Cloud Native Computing Foundation25

Planned Implementation
• Develop an open source CNF Conformance Test Suite

– Initial work will be seeded by Vulk Coop and ii.coop, CNCF contractors who
developed the CNF Testbed, APIsnoop, and are working on K8s conformance tests

– Engagement needed from developers from telecom operators and vendors
– Planning to apply to become a CNCF sandbox project
– Aspiration is to leverage existing upstream work as much as possible

• Static tests will run on the CNF artifact, outside of K8s
• Runtime tests will demonstrate that the CNF installs in a K8s cluster and

successfully responds to tests provided by the CNF, upstream tests from
other conformance projects, or a packet generator

• A basic principle of the test suite is that it will leverage upstream test
suites, linters, and validations as much as possible, and any bug fixes or
enhancements will be submitted upstream first

https://github.com/cncf/cnf-conformance

© 2020 Cloud Native Computing Foundation26

Components of CNF Conformance Test Suite
• APIsnoop: Use Kubernetes audit logs to track every K8s API call used by a

CNF and therefore specify what version of K8s is required and any beta or
alpha API usage

• Helm v3 chart testing (ct): linting and testing
• Helm v3 installation: Functional test on CNF Testbed
• Dual Stack (IPv4 & v6): Functional test on CNF Testbed
• Validate Prometheus metrics using promtool
• Other tests (need plans)

– Validate OpenTelemetry metrics
– Validate Fluentd-compatible logging
– Demonstrate that CNF is stateless and/or relies on separate service to store state
– Demonstrate that any requirement for custom hardware uses device plugin API

• Performance testing
– Demonstrate that the CNF delivers a set amount of traffic throughput and supports a

set amount of sessions, when running on standardized hardware

https://github.com/cncf/apisnoop
https://github.com/helm/chart-testing
https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/

© 2020 Cloud Native Computing Foundation27

Lessons from Certified Kubernetes
• Certified Kubernetes is based on the open source conformance test suite

developed in parallel with new versions of Kubernetes
• It includes some unique properties for a certification platform:

– Organizations self-certify by running the test suite against their Kubernetes platform
– Output log results are submitted via a GitHub pull request
– These results are reviewed by CNCF staff, and then the certification is approved
– Any user can later verify that the platform remains conformant, which has the effect

of crowd-sourcing the validation
– Certified implementations can then use the Certified Kubernetes logo and add

Kubernetes to their product name (e.g., Acme Kubernetes Engine)
• Decision-making is done by the certification working group that operates

in conjunction with Kubernetes’s SIG Architecture

© 2020 Cloud Native Computing Foundation28

From Conformance to Certification
• If the CNF Conformance Test Suite proves useful, it would be natural to

build out a certification program for CNFs
• This could replicate the self-certification process used by the Certified

Kubernetes program
• It can be done in conjunction with LF Networking’s OPNFV Verification

Program (OVP) and the Common NFVI Telco Task Force (CNTT)
• One option would to be to emulate LEED Certification and the Core

Infrastructure Initiative Best Practices Badge by having the test suite
specify scoring ranges as bronze, silver, etc.
– We also want probably want to explicitly include a “not-so-great” result meaning

that that the CNF does not implement some base level of best practices
• It is not clear that there is any need for platform conformance and

certification beyond what is already provided by Certified Kubernetes

https://www.lfnetworking.org/OVP
https://github.com/cntt-n/CNTT/
https://new.usgbc.org/leed
https://bestpractices.coreinfrastructure.org/

Open Questions

© 2020 Cloud Native Computing Foundation30

The CNI Trap
• The Container Network Interface (CNI) is a CNCF-hosted project that

provides network interfaces for plugins to Kubernetes. There are several
dozen CNI plugins today

• One concern that operators have expressed is that if a vendor’s CNFs
require the use of that vendor’s CNI plugin – and especially if it is the only
CNI plugin that can be used – then “conformant” Kubernetes
implementations could wind up as single-vendor walled gardens

• On the other hand, if CNFs can only rely on the lowest common
denominator of CNI functionality, then they will not be able to take full
advantage of the underlying hardware

• The solution may be a set of CNI profiles that define sufficient
performance without requiring use of specific CNI plugins

https://github.com/containernetworking/cni
https://github.com/containernetworking/cni#3rd-party-plugins

© 2020 Cloud Native Computing Foundation31

Conformance Profiles
• One of the reasons that Certified Kubernetes has been so successful is

that it has limited the number of conformance profiles – so far, to only 1
• There are not, for example, different profiles for public and private clouds
• At some point, a profile may be added to support Windows workloads
• One fear of a CNF Conformance program is that it will support so many

profiles – such as different CNI plugins, or implementation of Network
Service Mesh, or availability of certain hardware – that interoperability will
be far less likely

https://networkservicemesh.io/
https://networkservicemesh.io/

© 2020 Cloud Native Computing Foundation32

Privileged Pods
• Best practice is to follow the Principle of Least Privilege

– Unprivileged pods are also less likely to conflict
• One pattern that is emerging for cloud native telecoms is to use a

privileged pod to initialize nodes with networking functionality such as
Network Service Mesh, SR-IOV, and/or eBPF/Cilium
– This would enable CNFs to utilize advanced networking without needing to run in

privileged mode
– This is somewhat analogous to Unix daemons that initially run with privilege and then

use setuid to drop privileges

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://kubernetes.io/docs/concepts/workloads/pods/pod/#privileged-mode-for-pod-containers
https://networkservicemesh.io/
https://github.com/intel/sriov-network-device-plugin
https://kubernetes.io/blog/2017/12/using-ebpf-in-kubernetes/
https://docs.cilium.io/en/v1.6/kubernetes/
https://en.wikipedia.org/wiki/Setuid

© 2020 Cloud Native Computing Foundation33

MANO Integration
• One open question on CNF Conformance is whether and how to test for

Management and Orchestration (MANO) integration
• The leading MANO offerings are ONAP from the Linux Foundation and

OSM from ETSI
• Some operators have expressed an interest in deploying CNFs that are

not managed by their existing MANO systems

https://www.onap.org/
https://osm.etsi.org/

© 2020 Cloud Native Computing Foundation34

What about CNTT RA2?
• The Common NFVI Telco Task Force (CNTT) is a joint effort of the Linux

Foundation’s LF Networking and the GSM Association
• CNTT has an active effort underway to define a reference architecture

(RA2) for Kubernetes-based CNFs
• The CNF Conformance test suite envisioned in this proposal would likely

be able to validate conformance with RA2
• The expectation is that this test suite would feed into the RA2 process by

encoding best practices into software tests

https://github.com/cntt-n/CNTT
https://wiki.lfnetworking.org/display/LN/Common+NFVI+Telco+Task+Force+-+CNTT
https://www.gsma.com/futurenetworks/5g/common-nfvi-telco-taskforce-terms-of-reference/
https://github.com/cntt-n/CNTT/tree/master/doc/ref_arch/kubernetes

Outline of Some Potential
Tests

© 2020 Cloud Native Computing Foundation36

Compatibility Tests
CNFs should work with any Certified Kubernetes product and any
CNI-compatible network that meet their functionality requirements
• Does the vendor’s CNI plugin conform to the CNI specification?
• Does the CNF use Alpha Endpoints (e.g. using APIsnoop)?
• Does the CNF use Beta Endpoints (e.g. using APIsnoop)?
• Does the CNF use only K8s Conformance Tested / Generally Available

Endpoints (e.g. using APIsnoop)?

https://github.com/containernetworking/cni/blob/master/SPEC.md
https://github.com/cncf/apisnoop
https://github.com/cncf/apisnoop
https://github.com/cncf/apisnoop

© 2020 Cloud Native Computing Foundation37

Statelessness Tests
State should be stored in a Custom Resource Definition or a separate
database (e.g. etcd) rather than requiring local storage. The state should
be resilient to node failure

• Can we reset the container and verify that the CNF comes back up (e.g.
using Litmus chaos testing)?

• Can we reset any child processes that the parent process started, and
see that those child processes are reaped (e.g. using Falco or Sysdig
Inspect?

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/etcd-io/etcd
https://github.com/litmuschaos/litmus
https://github.com/falcosecurity/falco
https://github.com/draios/sysdig-inspect
https://github.com/draios/sysdig-inspect

© 2020 Cloud Native Computing Foundation38

Scalability Tests
CNFs should support horizontal scaling (across multiple machines) and
vertical scaling (between sizes of machines) using the native K8s kubectl
command.
• Can we increase/decrease capacity (without signing physical contracts

or calling anyone)?
• Can a CNF be scaled automatically based on load (e.g using CNF

Testbed load test use case)?
• Does the CNF control layer respond to retries for failed communication

(e.g. using Pumba or Blockade for network chaos and using Envoy for
retries)?

https://kubernetes.io/docs/reference/kubectl/cheatsheet/#scaling-resources
https://github.com/cncf/cnf-testbed
https://github.com/cncf/cnf-testbed
https://github.com/alexei-led/pumba
https://github.com/worstcase/blockade
https://github.com/envoyproxy/envoy

© 2020 Cloud Native Computing Foundation39

Security Tests
CNF containers should be isolated from one another and the host. They can
be hardened using tools like OPA Gatekeeper, Falco, Sysdig Inspect and
gVisor
• Are there any containers running in privileged mode (e.g. using OPA

Gatekeeper)?
• Are there containers accessing sensitive files, paths or writing files to

sensitive directories on the host (e.g. using Falco?)
• Are there any shells running inside a container?
• Is there a server process spawning a child process of an unexpected

type?
• Is there a standard system binary, such as “ls”, that is making an

outbound network connection?

https://github.com/open-policy-agent/gatekeeper
https://github.com/falcosecurity/falco
https://github.com/draios/sysdig-inspect
https://github.com/google/gvisor
https://github.com/falcosecurity/falco
https://github.com/open-policy-agent/gatekeeper
https://github.com/open-policy-agent/gatekeeper
https://github.com/falcosecurity/falco

© 2020 Cloud Native Computing Foundation40

Configuration and Lifecycle Tests
Configuration and lifecycle should be managed using ConfigMaps,
Operators, or other declarative interfaces.
• Is the CNF installed using a versioned Helm v3 chart?
• Is there a liveness entry in the helm chart and is the container responsive to it after a

reset (e.g. by checking the helm chart entry)?
• Is there a readiness entry in the helm chart and is the container responsive to it after a

reset?
• Can we start the pod/container without mounting a volume (e.g. using helm

configuration) that has configuration files?
• Can we stop pods/containers and see that the application continues to perform (e.g.

using Litmus or Kube-monkey)?
• Can we reset any child processes that the parent process started, and see that those

child processes are reaped (ie. monitoring processes with Falco or sysdig-inspect)?
• Can the CNF perform a rolling update (i.e. kubectl rolling update)?

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/#understanding-kubernetes-objects
https://helm.sh/docs/topics/chart_best_practices/dependencies/#versions
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-volume-storage/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-volume-storage/
https://github.com/litmuschaos/litmus
https://github.com/asobti/kube-monkey
https://github.com/falcosecurity/falco
https://github.com/draios/sysdig-inspect
https://kubernetes.io/docs/tasks/run-application/rolling-update-replication-controller/

© 2020 Cloud Native Computing Foundation41

Observability Tests
CNFs must externalize their internal states in a way that supports metrics,
tracing, and logging in order to maintain, debug, and give insight into their
protected environments.

• Logging: The CNF supports Fluentd-compatible logging
– Is there traffic to Fluentd?

• Tracing: The CNF supports OpenTelemetry-compatible tracing
– Does the CNF generate Open Telemetry compliant data?
– Is there traffic to Jaeger?

• Monitoring: The CNF supports an OpenMetrics interface that Prometheus
and other monitoring tools can use.
– Is there traffic to Prometheus?

https://opentracing.io/
https://github.com/OpenObservability/OpenMetrics
https://github.com/prometheus/prometheus

© 2020 Cloud Native Computing Foundation42

Installable and Upgradeable Tests
The CNF Conformance suite will check for usage of standard, in-band
deployment tools such as Helm (version 3) charts
• Is the Helm chart valid (e.g. using the helm linter)?
• Does the install script use Helm v3?
• Can the CNF perform a rolling update (i.e. kubectl rolling update)?

https://github.com/helm/
https://github.com/helm/chart-testing
https://kubernetes.io/docs/tasks/run-application/rolling-update-replication-controller/

© 2020 Cloud Native Computing Foundation43

Hardware Resources and Scheduling Tests
The CNF container should access all hardware and schedule to specific
worker nodes by using a device plugin.

• Is the CNF accessing hardware in its configuration files?
• Does the CNF access hardware directly during run-time (e.g. accessing

the host /dev or /proc from a mount)?
• Does the CNF access hugepages directly instead of via Kubernetes

resources?
• Does the CNF Testbed performance output show increased throughput

and sessions when the scale is increased (e.g. using the CNF Testbed
(vendor neutral) hardware environment)?

https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://github.com/cncf/cnf-testbed/blob/c4458634deca5e8ab73adf118eedde32904c8458/examples/use_case/external-packet-filtering-on-k8s-nsm-on-packet/gateway.yaml#L29
https://github.com/cncf/cnf-testbed/blob/c4458634deca5e8ab73adf118eedde32904c8458/examples/use_case/external-packet-filtering-on-k8s-nsm-on-packet/gateway.yaml#L29
https://github.com/cncf/cnf-testbed

© 2020 Cloud Native Computing Foundation44

Tools
• Current work taking place at https://github.com/cncf/cnf-conformance
• Using k-rail to validate that CNFs continue to carry traffic when

appropriate policies are enforced
• Using NFVBench and TRex to generate network traffic

https://github.com/cncf/cnf-conformance
https://github.com/cruise-automation/k-rail
https://github.com/opnfv/nfvbench
https://trex-tgn.cisco.com/

Where to Discuss

© 2020 Cloud Native Computing Foundation46

Get Connected with the Telecom User Group

• Book a time to meet with Dan Kohn or email your comments to
dan@linuxfoundation.org or Slack me at slack.cncf.io

• Join the #tug channel on CNCF slack
– slack.cncf.io

• Subscribe to the CNCF Telecom User Group mailing list:
– telecom-user-group@lists.cncf.io

• Attend CNCF Telecom User Group meetings:
– https://github.com/cncf/telecom-user-group
– 1st Mondays at 5pm CET / 8am Pacific Time (US & Canada)
– 3rd Mondays at 1pm CET / 7pm China Standard Time

https://calendly.com/dankohn
mailto:dan@linuxfoundation.org
http://slack.cncf.io
mailto:telecom-user-group@lists.cncf.io
https://github.com/cncf/telecom-user-group

© 2020 Cloud Native Computing Foundation47

Events Where the TUG Will Be Meeting
• Linux Foundation Member Summit

– Lake Tahoe: March 10–12, 2020
• KubeCon + CloudNativeCon Europe

– Amsterdam: March 30-April 2, 2020
• Open Networking & Edge Summit

– Los Angeles: April 20-21, 2020

https://events.linuxfoundation.org/lf-member-summit/
https://events.linuxfoundation.org/kubecon-cloudnativecon-europe/
https://events.linuxfoundation.org/open-networking-edge-summit-north-america/

Appendix

© 2020 Cloud Native Computing Foundation49

LF Networking OVP: End to End Compliance & Verification
Program
Accelerating Deployment – Reduce Operator & Supplier Integration/Interop Testing
Intervals By 50%

Operator Services on Boarding

Common NFVI (CNTT) RA1

VIM (Openstack)

 MANO++ (NFVO)

VNF VNF VNF VNF

VNF SDK/VVP, Dovetail

VIM (OpenStack)

LFN OVP Phase 1
(in collaboration with GSMA/CNTT)

Simplified VNF on-boarding, Reduced time and cost of
operationalizing a VNF through a common NFV

Framework*

Separate solutions for VNF,
MANO, NFVi lifecycle
management & onboarding

Common NFVI (CNTT) RA1, RA2

VIM (Openstack)

 MANO++ (NFVO)

VNF VNF CNF CNF

SDK/VVP, Dovetail, Helm (OSS/BSS SDO)

VIM (K8s)

Hybrid (VNF & CNF) Compliance and Verification
with OVP Ph2 in partnership with CNCF

Conformance tests for CNFs and K8s in CNCF

LFN OVP Phase 2
(additional collaboration with
CNCF)

CNF Conformance (CNCF)

CNF Conformance (CNCF)

Today

© 2020 Cloud Native Computing Foundation50

Current Approaches for CNF Modeling

•
•

https://wiki.onap.org/display/DW/Deploying+vFw+and+EdgeXFoundry+Services+on+Kubernets+Cluster+with+ONAP
https://github.com/cloudify-incubator/cloudify-kubernetes-plugin/blob/master/plugin.yaml
https://github.com/cloudify-incubator/cloudify-kubernetes-plugin/tree/master/examples
https://github.com/tliron/puccini/tree/master/assets/tosca/profiles/kubernetes/1.0
https://wiki.onap.org/display/DW/K8s+Plugin+Network+Related+CRD%27s+for+R5

© 2020 Cloud Native Computing Foundation51

Current Approaches: Pros and Cons

•
•

•
•

•
•

•
•

•

•

•
•

•
•
•

• •

•

•

•

•

•
•

© 2020 Cloud Native Computing Foundation52

Alternatives Considered
• Using TOSCA or HEAT
• Cloudify or Terraform Orchestration
• TOSCA on Kubernetes by Tal Liron

https://cloudify.co/blog/why-do-i-need-tosca-if-im-using-kubernetes-part-ii/
https://wiki.onap.org/download/attachments/25434845/TOSCA%20on%20Kubernetes.pdf?version=2&modificationDate=1529455961000&api=v2

© 2020 Cloud Native Computing Foundation53

The Challenge of Transitioning VNFs to CNFs
• Moving from network functionality from physical hardware to

encapsulating the software in a virtual machine (P2V) is generally
easier than containerizing the software (P2C or V2C)

• Many network function virtualization VMs rely on kernel hacks or
otherwise do not restrict themselves to just the stable Linux kernel
userspace ABI
– They also often need to use DPDK or SR-IOV to achieve sufficient

performance
• Containers provide nearly direct access to the hardware with

little or no virtualization overhead
– But they expect containerized applications to use the stable userspace

Linux kernel ABI, not to bypass it

