(warning) Re-arranging content...and, cleaning up....

General Background

A broad set of transformations are taking place:

To efficiently and effectively deploy 5G network supporting ultra low latency and high bandwidth mobile network, we need to deploy variety of applications and workload at the edge and close to the mobile end user devices (UE or IoT).  That would include various virtualized RAN and core network elements, content (video), various applications (AR / VR, industrial automation, connected cars, etc.).  We might deploy near-real time network optimization, customer experience / UE performance enhancement applications at edge.  Edge cloud must support deployment of third party application (e.g. Value added optional services, Marketing, Advertising, etc.).  We must deploy mechanisms to collect real time radio network information, process them in real-time (e.g. Geo Location data), summarize, anonymize, etc. and make them available to third party applications deployed at the edge or central location or outside service provider environment.  Edge data collection could also be used for training machine learning models and fully trained models can be deployed at the edge to support network optimization.

The need

End users and other devices, cyber-physical systems will benefit from a broad set of context information that can enhance and enrich the delivery of a broad set of applications. 

Service Deployment Goal

Deliver Application SLAs while minimizing TCO.

Edge Application Profiles


No

Application Classification

(based on required RTT)

Application ExamplesNetwork / Service Behavior TypeDeployment Component/ APIsONAP ManagedEdge Deployment Hard /Soft Constraint (Based on RTT)Potential Application ProviderCasablanca CandidateAdditional Information
1Real-time (20ms -100ms)In service path optimization applications which run in open CU-CP platform (also known as RAN Intelligent Controller, or SD-RAN controller). Real-Time   Network State ControlOpen 5G CU-CP (CU - Control Plane) – VNFC.YesHardNF Vendor/Service Provider/3rd PartyYes

These applications include load balancing, link set-up, policies for L1-3 functions, admission control and leverage standard interface defined by oRAN / xRAN between network information base (or context database) and third party applications. Data collection through is B1 and implemented using x technology.

2Near-real-time (500ms and above)Slice monitoring, performance analysis, fault analysis, root cause analysis, SON applications, Optimization (SON Drive Test Minimization etc.), ML methodologies for various apps.Network Analytics & OptimizationDCAEYesSoftNF Vendor/Service ProviderYes
3Near-real-time (500ms and above)Video Analytics, Video Optimization, Customer geoLocation information, Anonymized customer data etc.Workload Analytics,  Optimization & Context processingCloud Edge or Cloud CentralNoSoft3rd PartyNA. Out of scope for ONAPThe apps are OTT and the service provider is offering their infrastrcture as a service to OTT providers.
4Real-time (10-20 ms)Third party applications that directly interacts with the UEs, like AR/VR, factory automation, drone control, etc. Workload Automation / AR-VR / Content, etc.UE or Cloud EdgeNoHard3rd PartyNA. Out of scope for ONAP.

These are third party applications, developed by enterprise customers (e.g. factory automation) or content creators (AR/VR applications). In this case, messages or requests or measurements directly go from UE (via UPF or GWs) to the applications and applications respond back. 

5same as 3)same as 3)Value Added Services + same as 3)

same as 3) + MEC/Cloud APIs (Note 1)

Yessame as 3)same as 3)StretchService Provider could be oferring video surveillance (video analytics/optimization apps etc.) as a service to enterprises.
6same as 4)same as 4)Value Added Services + same as 4)same as 4) + MEC/Cloud APIs (Note 1)Yessame as 4)same as 4)StretchService Provider could be oferring factory automation as a service to enterprises.

Note 1:  API Details

Edge Infrastructure Profiles

((warning) example based on Akraino Edge Stack..but, need to generalize)  

ProfilesWorkloadsComputeNetworkingStorageControlSecurityEdge Application Infrastructure
Large

Support for VMs and containers.


Commentary:

  • VNFs from Operators and Edge applications from customers of Operators.
  • Number of tenants to be supported???

>50 Compute Servers

Accelerators:

SRIOV based QAT for Crypto and Compression acceleration.

ML/DL Accelerators

Compute profiles: Fixed number of profiles are expected to be supported. (Will add profiles)


SRIOV Networking for High performnace Data plane VNFs.

vSwitch (OVS-DPDK) based networking for all other workloads

Multiple leaf switches and two spine switches

WAN - Underlay :

  • L3VPN Support (BGPVPN)
  • L2VPN support (E-VPN, PBB VPN, VPLS?)

Underlay realization options

  • PE at the Edge (MPLS/BGP start at the Edge) as physical appliance
  • PE at the edge as virutal appliance
  • CE- Physical at the edge
  • CE - Virtual at the edge

Overlay realization options

  • GENEVE based networks (for workload migration, redundancy and scalability)

IPv4 and IPv6 support

NAT44 with LSN (Large Scale NAT) support by providers.

Support for dedicated public IP addresses

Commentary: Network sharing among container and VM workloads will need to be supported. DVR (Distributed Virtual Routing) for forwarding packets locally among vSwitch based networks. Leaf/Spine switches for forwarding traffic among SRIOV based networks and for networks between vswtich and SRIOV based networks.

Few fixed profiles for following:

  • Local network profiles
  • Fabric topology profiles
  • WAN connectivity profiles

Block device support using Ceph

Dedicated nodes for storage ( 3 nodes )

Storage profiles representing whether the nodes are dedicated for storage, use compute nodes for storage, Number of nodes for storage etc...

Is support for Object storage required in Edges?

Dedicated nodes for control stack

Automation Offload Platform (Offloading ONAP) at the Edge.

Few control profiles

  • Profile 1:
    • Openstack for VM workloads
    • K8S for Container workloads
    • Dedicated nodes for VMs and containers.
  • Profile 2:
    • K8S control for both VMs and containers. No need to dedicate the computes.

Automation Offload Platform profiles consists of following:

    • VNF Life Cycle management
    • Fabric Control
    • WAN Control
    • Analytics Offload


Transport : TLS 1.2 and above between ONAP and Edge Services

Infra Security: TPM 2.0/SGX for private key security and secret/password protection, Remote attestation to detect any software tampering of compute, storage and control nodes.



MEC Platform as a VNF to provide contextual information to Edge applications.



MediumSame as above

Same as above.

Number of compute nodes are >10 and < 50

Same as aboveSame as above, except that there is no dedication of nodes to Ceph cluster

Same as above with respect to control, but Automation Offload Platform is not part of the Edge. No dedicated control nodes. Control functionality is shared with compute nodes.

Support for K8S profile as it can support both VMs and containers

Same as aboveSame as above
SmallSame as above, but may support very less number of tenantsSame as above. Number of compute nodes are < 10Same as above, but no PE and CE at the Edge. Fabric itself acts as CE.Same as above, no dedication of nodes to Ceph cluster

No control at the Edge

No Automation offload platform at the Edge

Regional sites are expected to provide control and AOP services.

Support for K8S based control.

Same as aboveSame as above

Edge Infrastructure Profile Summary 

Key Challenges w/Centralized ONAP Architecture for Network Function Edge App/Infra Profiles

WAN network bandwidth & latency issues for the following key functions

Exemplary Network Function Placement/Service Assurance Policy for demonstrating the aforementioned challenges

 Landscape for addressing aforementioned Challenges

Hierarchical (ONAP Central, Edge) Architecture

Single Provider - Hierarchical Architecture


Single Provider - Edge Functional Decomposition 

FunctionStatefulnessONAP Project MappingDetails
InventoryyesA&AI
IP Address Management (IPAM)yesSDN-C
Multi-Cloud SupportnoMulti-VIM
Initial PlacementnoOOF
Closed Loop ControllernoAPP-C
Closed Loop PolicynoPolicy
Infra Closed Loop AnalyticsnoMulti-VIM, DCAE
App Closed Loop AnalyticsnoDCAE
Loggingno

Infra/App Monitoring events, statisticsno

Single Provider - Sequence Diagram

ONAP Activity Goal #1: ONAP requires IaaS/PaaS attributes (see ongoing work – Edge Cloud Infrastructure Enablement in ONAP5G Items for Casablanca) from Cloud providers for Infrastructure profiles that allow Distributed, Highly-secure, Config/Cloud-diverse, Capacity-constrained and Peformance/Isolation-aware

ONAP Activity Goal #2: Define hierarchical ONAP Central, Edge Architecture/functional interactions (API reference points) to support aforementioned Application/Infrastrcuture profile in Any "Cloud" (internal Business Unit or external Partner) at Any "Location" edge, regional or central.