Policy

POLICY is a subsystem of ONAP that maintains, distributes, and operates on the set of rules that underlie ONAP’s control, orchestration, and
management functions.

POLICY provides a logically centralized environment for the creation and management of policies, including conditional rules. This provides the capability
to create and validate policies/rules, identify overlaps, resolve conflicts, and derive additional policies as needed. Policies are used to control,
influence, and help ensure compliance with goals. Policies can support infrastructure, products and services, operation automation, and security. Users,

including network and service designers, operations engineers, and security experts, can easily create, change, and manage policy rules from
the POLICY Manager in the ONAP Portal.

The figure below represents the target POLICY Architecture.

—e . v Dri i
= ONAP Portal (access to GUIs) ONAP Operations ONARP Policy Driven Decision &
3] i) i Manager (OOM) Enforcement Framework
Service Design & Creation (SDC) Master Optimization Framework
°
POLICY Creation Framework 28
25
Policy-specific _ _) ‘E E Loop
usecase GUI POLICY Creation / Administration Policy Updates 8 Central DCAE
: R i from Customers
Policy Template / Model :
. . ! andlpariners Service Control Framework
ata nalytics /|| Corrective Naming | --- - Orchestration
Collection Signature Action 3 3
3 .=
2.2 h\l} Service Controller
- . . o
Policy Classification Active & -‘g o «
: [Dbcae
Cloud Network | Service = Security = Audit | ... LETEL
Inventory Network Control Framework
Advanced Policy Functions T w Orchestration
- - 52 h\
Validation || c:_rfn_fluctt_ Ilsea!rm:_g/ Coordination 25 % Network Controller
entification erivation Outhound E 2
0SS / BSS) DCAE
Systems Cloud Control Framework
- Orchestration
[simulation) SR S
—_ r 3 .=
@ Sdalles 22 " heoy Cloud Controller
Dev Tools 28 \V
= [bcae
Common Metadata Storage and Distribution
Storage i ka u
Networ] % %rvices VNP
Compute tL.I
Infrastructure
11/28/2017 Figure 1: ONAP POLICY ARCHITECTURE

The figure below represents the current POLICY Architecture.

)
POLICY Creation / Administration (PAP)

‘ Policy Template / Model service Cc

POLICY Creation Framework ONAP Policy Driven Decision &

Enforcement Framework

Guls
(CLAMP, POLICY)

Orchestration

S
DCAE

Gollection Analytics/ | | Coracive ETs) R
Oblecs Sgptore Ao, lAvailable MR
Inventory

‘ Policy Classification ‘

Operational Configuration Guard

Cloud Controller /
Open stack

Basic Policy Manual Conflict
Validation Identification

Policy Storage and Distribution W ‘ REST APIs / Event ‘
T 1 1 oren

/2872017 Figure 2: ONAP POLICY ARCHITECTURE [Release 1)

ol Framework

AN [Er—
N

v DCAE

‘ Policy Normalization ‘

Initial
poli

A policy is defined to create a condition, requirement, constraint, decision, or a need that must be provided, evaluated, maintained, and/or enforced. The
policy is validated and corrected for any conflicts, and then placed in the appropriate repository, and made available for use by other subsystems and
components. Alternately, some policies are directly distributed to policy decision engines such as Drools or XACML. In this manner, the constraints,
decisions and actions to be taken are distributed.

System Architecture

ONAP POLICY is composed of several subcomponents: the Policy Administration Point (PAP), which offers interfaces for policy creation, and two types
of Policy Decision Point (PDP), each based on a specific rules technology. PDP-X is based on XACML technology and PDP-D is based on Drools
technology. PDP-X is stateless and can be deployed as a resource pool of PDP-X servers. The number of servers can be grown to increase both
capacity (horizontal scalability) and to increase availability. The PDP-D is stateful, as it utilizes Drools in its native, stateful way and transactions persist
so long as the PDP-D is active. Persistent Drools sessions, state management, local and geo-redundancy have been deactivated for the initial release of
ONAP POLICY and can be turned on in a future release. Additional instances of XACML/Drools engines and assigned roles/purposes may also be added
in the future to provide a flexible, expandable policy capability.

As illustrated in the Figure below, the POLICY components are supported by a number of interfaces and subsystems. The ONAP Portal provides a human
interface for the creation, management and deployment of policies. It is a web-based system that utilizes POLICY APIs provided by the PAP.

DCAE & Oth Stateful CL Stateful CL outbound Stateful O
External Stateless XACML ' e ABAI 0 : o
TOSCA Policy-Enabled Inbound Transactions outbound
App/GUI (e.g. Requests AAF (request (create VNF . . . VEC APP-C
Models CLAMP) (SDN-CP, 50) Elements) Module) Transactions (SDN/Generic NF Transactions
i (eg. SNIRO) (DCAE Anomalies) Controllers) (eg- Ticketing)
I | | 4 A A & S W S L
POE-1a POE-1b |
POE-2a POE-3a ! MSB / Data Movement T !

Other Policy
Deployment A
= MAVEN Repository POI-7b
DROOLS Policy
Deployment

Policy Creatidn & Management

PDP-X
(Policy Administration POL2 (XACML Policy Decision / 6a PO
Point) Policy Deployment Distribution Point)

Policy e
Guard POI-8
Module

PDP-D
(DROOLS Policy Decision
Point)

DROOLS Pdficy
+-=erNfification

DROOLS
Session
State

Drools to Guardrail Inquiry

POI-10
Persistencelof Policies (277
and Policy Dictionaries Active Standby Nlanagement
Nofle Stdte Management Transactfon State Management
v Policy External APl
¥ Policies & Node Active DROOLS Session Policy Internal APl

Dictionaries Node State Standby Data* State *

POLICY REPOSITORY Active Standy Session Notes:)

* Can be optionally enabled or disabled
** Authentication (mostly machine user)
*¥¥BRMS GW needs to be enhanced or
replaced by enhanced PDP-X direct

distribution interface to all PDPs.
3/18/2018 ONAP POLICY CREATION AND RUNTIME REFERENCE ARCHITECTURE

(XACML DB) State Mgmt Info Info Persist Info

Interface Interface (API) Extemy| Inferia = necorinton Interface | Interface (API)

Internal Interface Description
Name Identifier Name b
POE-1a Model API Policy Creation Model Input Interface (Manual Interface thru GUI)
" " POI-1 PAP API Policy Creation and Management Interface (REST)
POE-1b CRUD API API for Policy creation and management
i A CTBER Eraniit=s (i ey TR I SR (RES e POI-2 PAP State APl | PAP Node State Management Interface (SQL)
POE2b PDP-X provides runtime interface inquiry interface to SO (REST)
POE3a & Policy Distribution Interface to DCAE Controller (REST) and Policy POI-3 Maria API Persistence of Policies and Policy Dictionaries Interface (SQL)
POE3b Distribute API Distribution Interface to SNIRO (REST) -
PDP-X to AAF Interface for Authentication (REST) & PDP-D Sends PoL-4 apfpfmznlar] | Reltey Deplojment e ()

POE4a & |AAFAPI
POE4b Enrichment API

request messages to A&AI for Policy to obtain the VM information POI-5 Integrity API
pertinent to taking the corrective action (REST)

Receive messages from DCAE that tell the PDP-D to trigger the
corresponding policy to take corrective action (called “onset”

PDP-X Node Sate Management Interface (SQL)

POI-6a & |Push API

i Drools Policy Notification Interface (DMAAP)*
POI-6b Notification API

POE-5 Event API
messages) or to end the action (called “abatement” POl-7a & |MAVEN API DROOLS Policy Deployment Interface (REST)
messages)(DMAAP) POL7b [DROOLS API YRR
T PDP-D to SDN Controller Interface (DMAAP) and Send request Send request messages to the PDP-X to query Guard for a
POE-gh | Controller API messages to Generic NF Controllers for POI-8 GUARD API permit/deny on the target entity the corrective action will take
restarting/rebuilding/migrating/ evacuating the target entity place on (REST)
POE-7 Ticketing API PDP-D to Ticketing Open Loop Interface (DMAAP)
PDI-9 DROOLS State API | PDP-D Node State Management Interface (SQL)
POE-8 SO AP| Send request message to SO for creating a VF Module (REST)
Send request messages to VFC for restarting the target entity PDI-10 Standby API PDP-D Policy Active Standby Management Interface (SQL)
POE-9a & |VFCAPI (REST) DROOLS Session
POE9b |APP-C API Send request messages to APP-C for directing needed actions POI-11 . PDP-D Policy Transaction Statement Management Interface (SQL)
(DMAAP)
3/18/2018 ONAP POLICY REFERENCE ARCHITECTURE API KEY

The PAP provides interfaces for the management of policies. It utilizes the XACML database to store policies, which are then distributed to the PDPs.

https://wiki.onap.org/display/DW/Portal

The XACML and Drools databases are hosted in a MariaDB cluster. The XACML database is used to persist policies and policy dictionaries and provide a
point for PDPs to retrieve policies. The XACML database also has tables used for node state management, detection of node failure and failover. As
indicated above, the state management tables will only include entries for the PAP and PDP-X as the testing is not yet complete for the PDP-D.

The PDP-X receives deployed policies and has interfaces to handle XACML policy transactions. These transactions are stateless and once complete, they
are removed from memory. If a policy that is deployed to the PDP-X is of an operational nature it will contain Drools rules and Java executables. These
artifacts are processed into Maven artifacts and pushed to the Maven repository. The PDP-D is then notified a new policy has been deployed.

When the PDP-D is notified a new policy has been deployed, it downloads it from the Maven repository and assigns it to an internal controller. This
controller provides the external Closed Loop interfaces to the DMaaP message bus over which events and messages are exchanged with external
systems. As events or messages arrive at the PDP-D, they are assigned to the appropriate controller and a Drools session is either created or retrieved
from memory. The events, messages or facts are passed to the Drools session and the corresponding rule is fired, resulting in a change of internal
session state and possibly actions taken in response to the rule processing. Response messages and requests are passed by the controller back over the
DMaaP message bus to the appropriate system. The Drools session can also have timers and autonomous events. In a future release the PDP-D can
enable the node state management and session persistence in the Drools DB.

Policy Creation

The Policy Creation component of the Policy subsystem enables creation of new policies and modification of existing polices, both during the design phase
and during runtime. Policy Creation is targeted to be integrated to a unified Service Design and Creation (SDC) environment.

A policy can be defined at a high level to create a condition, requirement, constraint, decision or a need that must be provided, evaluated, maintained, and
/or enforced. A policy can also be defined at a lower or functional level, such as a machine-readable rule or software condition/assertion which enables
actions to be taken based on a trigger or request, specific to particular selected conditions in effect at that time.

Some examples of types of policies are:

VNF placement — rules governing where VNFs should be placed, including affinity rules

Data and feed management — what data to collect and when, retention periods, and when to send alarms about issues

Access control — who (or what) can have access to which data

Trigger conditions and actions — what conditions are actionable, and what to do under those conditions

Interactions — how interactions between change management and fault/performance management are handled (for example, should closed
loops be disabled during maintenance?)

Policy Distribution

After a policy has been initially created or an existing policy has been modified, the Policy Distribution Framework sends the policy from the repository to its
points of use, which include Policy Decision Points (PDPs) and Policy enforcement points (DCAE, Controllers, etc), before the policy is actually needed.

The decisions and actions taken by the policy are distributed. Policies are distributed either in conjunction with installation packages (for example, related
to service instantiation) or independently, if unrelated to a particular service. Some policies can be configured (e.g., configuring policy parameters within
microservices), while other polices are delivered to policy engines such as XAMCL and Drools. With this methodology, policies will already be available
when needed by a component, minimizing real-time requests to a central policy engine or PDP (Policy Decision Point). This improves scalability and
reduces latency.

Separate notifications or events communicate the link or URL for a policy to the components that need it. Then, when a component needs the policy, it
uses the link to fetch it. Components in some cases might also publish events indicating that they need new policies, eliciting a response with updated
links or URLSs. Also, in some cases, policies can indicate to components that they should subscribe to one or more policies, so that they receive automatic
updates to those policies as they become available.

Policy Decision and Enforcement

Run-time policy enforcement is performed by ONAP subsystems that are policy-enabled or can respond to commands from a policy-enabled element such
as a PDP. For example, policy rules for data collection are enforced by the data collection functionality of DCAE. Analytic policy rules, identification of
anomalous or abnormal conditions, and publication of events signaling detection of such conditions are enforced by DCAE analytic applications. Policy
rules for associated remedial actions, or for further diagnostics, are enforced by the correct component in a control loop such as the MSO, a Controller, or
DCAE. Policy engines such as XACML and Drools also enforce policies and can trigger other components as a result (for example, causing a controller to
take specific actions specified by the policy). Additionally, some policies (“Guard Policies”) may enforce checks against decided actions.

Policy Unification and Organization

Because the POLICY framework is expandable and multipurpose, it is likely to contain many types of policies which require organization according to
some useful dimensions. Users can define attributes that specify the scope of policies, and these attributes can be extended to the policy-enabled
functions and components. Useful policy organizing dimensions might include:

® Policy type or category (taxonomical)

® Policy life cycle

® Policy ownership or administrative domain
® Geographic area or location,

® Technology type
® Policy language and version
® Security level or other security-related values, specifiers, or limiters

Attributes can be specified for each dimension. In addition to being defined for individual policies themselves, these attributes can be used to define the
scope of these additional additional policy-related functions:

® Policy events or requests/triggers
® Policy decision, enforcement, or other functions
® Virtual functions of any type

Policy writers can define attributes so that policy events or requests self-indicate their scope. The scope is then examined by a suitable function and
subsequently acted upon accordingly. Policy decisions and enforcement functions can self-indicate their scope of decision-making, enforcement, or other
capabilities. Virtual functions can be automatically attached to the appropriate POLICY Framework and distribution mechanisms.

SUMMARY
* Policy Engine Platform enables the creation and management of policies for a variety of use cases in ONAP.

* Model driven configuration policies
— Clients create TOSCA models to govern their configuration policies
— Self-serve to onboard to the Policy platform, no custom development
— Flexible JSON based payload can represent most any complex data structure

Decision policies

— Integration with AAF for authentication and authorization decisions
— Integration with control loops for execution policy guards

— In Progress: model based naming advanced decisions

* Advanced Rules Engine

— Provide ability for advanced control loops via Drools engine
— Interfaces for many ONAP components to trigger actions and receive events
— Maintain state throughout the workflows across the network and handle failures in the corrective actions

* Policy Dictionaries
— Ability to specify the building blocks of policies
- Provide consistency in policy definitions across users
* Master Policy repository and supporting infrastructure

— Authoritative store of all Policies
— Distribution of Policy via APl and real-time notifications
— Full API for retrieval, creation, updates, and deletion of policies

Key Principles
— Policy is flexible software configuration that drives system behavior
— Policy provides a simple, lightweight interface for partner applications

3/18/2018 ONAP POLICY : Summary

	Policy

