
CPS-390 Spike: Define and Agree DMI Plugin REST
Interface

References
Issues and Decisions
DMI URI
NCPS-NCMP - DMI Plugin Write Request Flow
Datastore
RESTCONF/NETCONF relationship
REST Data API

Request Format for Data Access
DMI Inventory, Model & Data Sync API
yang-patch operations (see rfc8072)
YANG Data Structure Extensions
References

References

 - CPS-390 Getting issue details... STATUS

RESTful API Design Specification

Issues and Decisions

Issue Notes Decision

1 How will
hostname
and port be
provided
when
dmiPlugin
register itself
and its list of
cmHandles
with NCMP

The team thinks that the information should instead be provided in the form of a
‘host-name’ and a ‘port’ (there was some debate on service-name v. host-name
but it was settled on host-name)

e.g. "dmiPlugin" : { <host-name>, <port> }

Where the host-name is unique. (the DB might assign an internal unique ID for
each entry but that is just for indexing and x-referencing in a relation DB and this
ID is not to be used/ exposed externally)

Instead of using ‘host-names’ and ‘ports’ parameters
between java applications when in the cloud all we need is
‘service-names’ . The mapping of service-names to hosts
and ports is done as part of the cloud configuration, in our
case Kubernetes. And these are dynamic! The client
application can then use a simple dns-lookup to connect to
an instance of the service.

Using service names also allows any plugin to use
implement scaling as they see fit e.g. partitioning

For the ONAP DMI Plugin which initial have only 1 instance
we can simply hard-code the service-name and us the same
name in the Kubernetes configuration e.g. “onap.cps.
dmiPlugin"

2 Additional
information in
request body
duplicates
cmHandleId
this is
redundant
information

Suggested to remove from request body to avoid possible error scenarios. Only the one with the additionalInformation is needed and
remove body

3 No need for
Sync method,
this is basic
standard
read
operation at
the root level
for that
cmHandle

4 Use include
'location'
property
when request
yang-module
sources

Suggestion: do include it in the request but allow dmiPlugin to decide to use it or
now. Location (this leaf is called schema in older RFC7895) is not mandatory to
support in YANG library and nodes may not include it. Another alternative
presumably used also by ODL itself is the <get-schema> RPC. The key
difference is that the YANG module definition is sent directly over the NETCONF
channel, not requiring separate file servers and clients. So this is maybe one
more reason that the ONAP DMI plugin currently doesn’t need the location
attribute.

Location is not needed for any plugin and could only lead to
ambiguity therefore will NOT be included in this request

https://jira.onap.org/browse/CPS-390
https://wiki.onap.org/display/DW/RESTful+API+Design+Specification

5 Inconsistent
use of
"Operation"
and/or HTTP
Methods to
distinguish
write
operations

Currently this page proposes to use "Operation=update" request body parameter
for restconf "Replace" and "Patch" operations and use the HTTP (RESTFul)
operation to distinguish between them. It also proposes to use PUT HTTP for
Read and Delete operations Basically a very confusing an unintuitive use of
HTTP operations to distinguish ambiguous operations that instead easily could
be defined by just using the 'operation' field in the request body.

Proposal Toine: For Consistent (restful) design I would
suggest to think as the operation to DMI-Plugin (always with
body) as "creating a new order to do something" toward DMI-
Plugin. Ie always a HTTP POST (or PUT?) operation. The
"operation " in the body can simple be extended to include
both "update" and "patch" as required. If the 'operation' is
NOT supplied "read" wil be assumed as the default operation

See also CPS-NCMP - DMI - SDNC Request and Response
Mapping

Proposal agreed by stakeholders in meeting 09 Nov 2021

Only 'POST' method needs to be supported
use term 'Update' instead of 'replace'

DMI URI
Below table shows the proposed interface, actual implementation might deviate from this but can be accessed from

Gerrit Source
Read-the-docs: https://docs.onap.org/projects/onap-cps-ncmp-dmi-plugin/en/latest/design.html

DMI URI format to follow below pattern

<OP>dmi/<v{vNumber}>/ch/<cmHandle>/<data|operations|dmiAction>/ds/<datastore>/[rp:]<resourcePath>?<query>

URI Mandatory or
Optional

Description

<OP> mandatory the HTTP method

dmi mandatory the dmi root resource

<v{vNumber}> mandatory version of the dmi interface is the target resource URI is the query parameter list

<cmHandle> mandatory unique (string) identifier of a yang tree instance.

<data|operations|dmiAc
tion>

mandatory yang data, rpc operation or a (non-modeled) dmi action

{datastore} mandatory mandatory datastore

<resourcePath> optional the path expression identifying the resource that is
being accessed by the operation. If this field is not
present, then the target resource is the API itself.

<query> optional the set of parameters associated with the RESTCONF message;
see Section 3.4 of [RFC3986]. RESTCONF parameters have
the familiar form of "name=value" pairs. Most query parameters are
optional to implement by the server and optional to use by the client. Each optional query parameter
is identified by a URI

NCPS-NCMP - DMI Plugin Write Request Flow
See CPS-NCMP - DMI - SDNC Request and Response Mapping

Datastore
If the cmhandle metadata indicates that data is not synched in CPS then the request is forwarded to the dmiPlugin

RESTCONF/NETCONF relationship

https://wiki.onap.org/display/DW/CPS-NCMP+-+DMI+-+SDNC+Request+and+Response+Mapping
https://wiki.onap.org/display/DW/CPS-NCMP+-+DMI+-+SDNC+Request+and+Response+Mapping
https://gerrit.onap.org/r/gitweb?p=cps/ncmp-dmi-plugin.git;a=tree;f=docs/openapi;h=e645d54772dc3fdb28b67991959dd5ecf96be499;hb=refs/heads/master
https://docs.onap.org/projects/onap-cps-ncmp-dmi-plugin/en/latest/design.html
https://wiki.onap.org/display/DW/CPS-NCMP+-+DMI+-+SDNC+Request+and+Response+Mapping

1.
2.
3.

4.

REST Data API
The DMI APIs for data access are similar to corresponding NCMP APIs. The following list is a summary of the main differences:

The URI prefix is /dmi instead of /ncmp.
For non-passthrough datastores, the resource path will be converted from cpsPath to RESTConfPath
The body for each request will contain additional information and any data provided on the NCMP interface (write operations) will be embedded in
a larger JSON structure as described in example below.
Since all requests will have a message body, in some cases the HTTP method will be different to allow passing data. Thus POST can be used,
the actual operation will be read from the body.

Request Format for Data Access

request body

{
 “operation”: “<operation>”, // Valid operations are: “create”, “read”, “update”, “patch” and “delete”.

 "dataType": "<dataType>", // e.g. "application/yang.data"

 “data”: { // Embedded data as a String.
 <data> // required for create and update operations. Optional filter-data for
read-operations
 },

 “cmHandleProperties”: { // Additional properties for CM handle previously added by DMI plugin and
stored in NCMP.
 <properties>
 }
}

Below table shows the proposed interface, actual implementation might deviate from this but can be accessed from

Gerrit Source
Read-the-docs: https://docs.onap.org/projects/onap-cps-ncmp-dmi-plugin/en/latest/design.html

Usecase REST
Method

URI

https://gerrit.onap.org/r/gitweb?p=cps/ncmp-dmi-plugin.git;a=tree;f=docs/openapi;h=e645d54772dc3fdb28b67991959dd5ecf96be499;hb=refs/heads/master
https://docs.onap.org/projects/onap-cps-ncmp-dmi-plugin/en/latest/design.html

1 Add a data resource for a cmHandle POST {dmiRoot}/dmi/v1/ch/<cmhandle>/data/ds/ncmp-datastore:running/
{parentDataResourceIdentifier}

{
<new-yang-data-resource>
}

Content-Type: application/json

"data" payload : yang-data+json

2 Delete a data resource for a cmHandle PUT {dmiRoot}/dmi/v1/ch/<cmHandle>/data/ds/ncmp-datastore:running/
{resourceIdentifier}

3 Patch a data resource for a cmHandle PATCH {dmiRoot}/dmi/v1/ch/<cmHandle>/data/ds/ncmp-datastore:running/
{resourceIdentifier}

{
<yang-data-for-merging>
}

Content-Type: application/json

"data" payload : yang-data+json

4 Patch multiple child resources for a single cmHandle PATCH {dmiRoot}/dmi/v1/ch/<cmHandle>/data/ds/<dsName>/{resourceIdentifier}

Content-Type: application/json

"data" payload : yang-patch+json

5 Execute a yang action on a cmhandle instance POST {dmiRoot}/dmi/v1/ch/<cmHandle>/data/ds/ncmp-datastore:operational/
{resourceIdentifier}/{action}

input: {
 "param1Name" :"param1Value”,
 "param2Name" : "param2Value”

}

Note : If the "action" statement has no "input" section, the request message
MUST NOT include a message-body

6 Execute an rpc operation POST {dmiRoot}/dmi/v1/operations/ch/<cmHandle>/ds/ncmp-datastore:operational/
{module-name}:{action}

{ input: {
 "param1Name" : "param1Value”,
 "param2Name" : "param2Value”
} }

Note: If there is no "input" section, the request MUST NOT include a message-
body

7 Read a filtered set of data under a data resource for a cmHandle PUT {dmiroot}/dmi/v1/ch/<cmHandle>/data/ds/ncmp-datastore:operational/
{resourceIdentifier}?fields={fields-expression}

Option Description

fields Request a subset of the
target
resource contents

8 Read data resources with specified fields under a given data
resource for a given cmHandle

PUT {dmiRoot}/dmi/v1/ch/<cmHandle>/data/ds/ncmp-datastore:operational/
{resourceIdentifier}?fields={fields-expression}

Option Description

fields Request a subset of the
target
resource contents

9 Get data resource with 'fileds' for a cmhandle with a given
scope condition

PUT {dmiRoot}/dmi/v1/ch/{cmHandle}/data/ds/ncmp-datastore:operational/
{resourcepath}?fields={fields}&scope={scope}

10 Read descendant nodes to a given depth for a given cmHandle PUT {dmiRoot}/dmi/v1/ch/{cmHandle}/data/ds/ncmp-datastore:operational/
{resourceIdentifier}?depth={level}

Option Description

depth Request limited sub-tree depth in
the reply content
If '1' then only immediate
resource
is retrieved
If '2' then resource plus next level
resources are retrieved

11 Replace data for a CMHandle PUT {dmiRoot}/dmi/v1/ch/<cmHandle>/data/ds/ncmp-datastore:running/
{resourceIdentifier}

{data : {

 the complete tree config to be replaced

 }}

DMI Inventory, Model & Data Sync API

 This presentation illustrates the API methods #1, #3 and #4 detailed below

Below table shows the proposed interface, actual implementation might deviate from this but can be accessed from

Gerrit Source
Read-the-docs: https://docs.onap.org/projects/onap-cps-ncmp-dmi-plugin/en/latest/design.html

*For response output, where applicable the yang-library format and conventions are used 'as is' or extended

Use Case Rest
Method

URI Example*

https://gerrit.onap.org/r/gitweb?p=cps/ncmp-dmi-plugin.git;a=tree;f=docs/openapi;h=e645d54772dc3fdb28b67991959dd5ecf96be499;hb=refs/heads/master
https://docs.onap.org/projects/onap-cps-ncmp-dmi-plugin/en/latest/design.html

1 Get module set for a
cmhandle

POST {dmiRoot}/dmi/v1/ch/ /cmhandle-001 modules Header :
: application/jsonContent-Type

Request Body

{
 "operation": "read",
 "cmHandleProperties ": {
 "subSystemId": "system-001"
 }
 }
}

Response Body

Response:
 "schemas": [
 {
 "moduleName": "example-
identifier",
 "revision": "example-
version",
 "namespace": "example-
namespace"
 },
 {

...
 }
]
 }

2 Get yang module source
for a list of modules

POST {dmiRoot}/dmi/v1/ch/<cmHandle>
/moduleResources

DMI Plugin will make multiple requests to
xNF and combine the result in a list

Request Body

{
 "operation": "read",
 "dataType": "application/json",
 "data": {
 "modules": [
 {
 "name": "pnf-sw-upgrade",
 "revision": "2019-12-03"
 }
]
 },
 "cmHandleProperties": {
 "subSystemId": "system-001"
 }
}

Response: a list yang module references and source for
each

Response Body

[{
"name" : "pnf-sw-upgrade",
"revision" : "2019-12-03",
"yang-source": "some-source", {...}]

GET Request with body

The HTTP libraries of certain languages (notably JavaScript) don’t allow GET requests to have a request body. In fact, some users are surprised that GET
requests are ever allowed to have a body.

The truth is that RFC 7231—the RFC that deals with HTTP semantics and content—does not define what should happen to a GET request with a body! As
a result, some HTTP servers allow it, and some—especially caching proxies—don’t.

The authors of Elasticsearch prefer using GET for a search request because they feel that it describes the action—retrieving information—better than the
POST verb. However, because GET with a request body is not universally supported, the search API also accepts POST requests: }

The same rule applies to any other GET API that requires a request body.
See Elasticsearch details here for more info

yang-patch operations (see rfc8072)

"create", "delete", "insert", "merge", "move", "replace", and "remove"

YANG Data Structure Extensions

https://tools.ietf.org/html/rfc8791

References

https://tools.ietf.org/html/rfc8791

Follow principles/patterns of RESTCONF RFC-8040 https://datatracker.ietf.org/doc/html/rfc8040
Follow principles/patterns of yang-patch RFC-8072 https://datatracker.ietf.org/doc/html/rfc8040
Follow principles/patterns of RESTCONF NMDA RFC-8527 https://datatracker.ietf.org/doc/html/rfc8527

https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc8527

	CPS-390 Spike: Define and Agree DMI Plugin REST Interface

