
SDC Troubleshooting

1 Docker Diagram
2 Connectivity Matrix
3 Offered APIs
4 Status Information
5 Logging

Docker Diagram

Amsterdam:

Docker
name

Description

sdc-
cassandra

The Docker contains our Cassandra server and the logic for creating the needed schemas for SDC. On docker startup, the schemes are
created and Cassandra server is started.

sdc-
elasticsearch

The Docker contains Elastic Search server and the logic for creating the needed mapping for SDC. On docker startup, the mapping is
created and Elastic Search server is started.

sdc-kibana The Docker contains the Kibana server and the logic needed for creating the SDC views there. On docker startup, the views are
configured and the Kibana server is started.

sdc-backend The Docker contains the SDC Backend Jetty server. On docker startup, the Jetty server is started with our application.

sdc-frontend The Docker contains the SDC Fronted Jetty server. On docker startup, the Jetty server is started with our application.

Beijing:

Docker name Description

sdc-cs The Docker contains our Cassandra server . Cassandra server is started.On docker startup the

sdc-cs-init The docker contains the logic for creating the needed schemas for SDC catalog server, On docker startup, the schemes are created.

sdc-cs-onboard-
init

The docker contains the logic for creating the needed schemas for SDC onboarding server, On docker startup, the schemes are
created.

sdc-es The Docker contains Elastic Search server. On docker startup, Elastic Search server is started.

sdc-init-es The Docker contains the logic for creating the needed mapping for SDC and the views for kibana. On docker startup, the mapping is
created.

sdc-kibana The Docker contains the Kibana server. On docker startup, the Kibana server is started.

sdc-onboard-BE The Docker contains the onboarding Backend Jetty server. On docker startup, the Jetty server is started with the application.

sdc-BE The Docker contains the catalog Backend Jetty server. On docker startup, the Jetty server is started with the application.

sdc-BE-init The docker contains the logic for importing the SDC Tosca normative types and the logic for configuring external users for SDC
external api's.

on start, up the docker executes, the rest calls to the catalog server.

sdc-FE The Docker contains the SDC Fronted Jetty server. On docker startup, the Jetty server is started with our application.

OOM/K8 deployment dependency map:

Connectivity Matrix

Docker name API
NAME

API purpose protocol
used

port number or
range

TCP
/UDP

sdc-cassandra SDC backend uses the two protocols to access the cassandra trift/async 9042/9160 TCP

sdc-elasticsearch SDC backend uses the two protocols to access the ES transport 9200/9300 TCP

sdc-kibana the API is used to access the kibana UI http 5601 TCP

sdc-onboard-
backend

the APIs are used to access the onboarding functionalty http/https 8081/8445 TCP

sdc-backend the APIs are used to access the catalog functionalty http/https 8080/8443 TCP

sdc-frontend the APIs are used to access the SDC UI and to proxy requests to the SDC
back end

http/https 8181/9443 TCP

Offered APIs

Container
/VM name

API
name

API purpose protocol
used

port number
or range used

TCP
/UDP

sdc-fe /sdc1
/feproxy/*

Proxy for all the REST calls from the SDC UI HTTP
/HTTPS

8181/8443 TCP

sdc-be /sdc2/* Internal APIs used by the UI. The request is passed through the Front end proxy server HTTP
/HTTPS

8080/8443 TCP

sdc-be /sdc/* External APIs offered to the different components for retrieving information from the SDC
Catalog. These APIs are protected by basic authentication.

HTTP
/HTTPS

8080/8443 TCP

sdconboarding
be

/onboardi
ng-api/*

Internal APIs used by the UI. HTTP
/HTTPS

8081/8445 TCP

Status Information

Diagnostic:

We provide a health check script that can show the state of our application.
The script is located at /data/scripts/docker_health.sh.
The script is taken from our repository in LF on VM spin.
The script calls a REST API in the FE and BE server.

BE health Check URL:

http://<BE server IP>:<BE server port>/sdc2/rest/healthCheck

The Back end health check provides the following INFO, in case one of the components is down the server will fail requests:

type section description

general SDC
info

"sdcVersion": "1.0.0-
SNAPSHOT",
"siteMode": "unknown",

This shows the current version of the Catalog application installed.
The site mode is not used in the current version.

general Catalog
info

{
"healthCheckComponent": "BE",
"healthCheckStatus": "UP",
"version": "1.0.0-SNAPSHOT",
"description": "OK"
}

This shows the current version of the catalog application installed.

Catalog sub components status

Elastic Search {
"healthCheckComponent": "ES",
"healthCheckStatus": "UP",
"description": "OK"
}

This describes our connectivity to Elastic Search.

TITAN {
"healthCheckComponent":
"TITAN",
"healthCheckStatus": "UP",
"description": "OK"
}

This describes our connectivity to and from the Titan client and the Cassandra server.

Cassandra {
"healthCheckComponent":
"CASSANDRA",
"healthCheckStatus": "UP",
"description": "OK"
},

This describes the status of the connectivity from catalog to Cassandra

Dmaap {
"healthCheckComponent": "DE",
"healthCheckStatus": "UP",
"description": "OK"
}

This describes our connectivity to the Dmaap.

Onboarding "healthCheckComponent":
"ON_BOARDING",
"healthCheckStatus": "UP",
"version": "1.1.0-SNAPSHOT",
"description": "OK",

This describes the state and version of the onboarding sub component

Onboarding sub component status

Zusamen {
"healthCheckComponent": "ZU",
"healthCheckStatus": "UP",
"version": "0.2.0",
"description": "OK"
}

this describes the version and status of the zusamen.

general
Onboarding info

{
"healthCheckComponent": "BE",
"healthCheckStatus": "UP",
"version": "1.1.0-SNAPSHOT",
"description": "OK"
}

this describes the state and version of the onboarding sub component

Cassandra {
"healthCheckComponent":
"CAS",
"healthCheckStatus": "UP",
"version": "2.1.17",
"description": "OK"
}

This describes the connectivity status to Cassandra from the onboarding and the Cassandra
version the onboarding is connected two.

The Front end server health check places a REST call to the Back end server to check the connectivity status of the servers.

the status received from the Backend server is aggregated in the Frontend health Check response.

1.

in addition to the info retrieved from the BE the info of the Frontend server is added for the Catalog and Onboarding

FE health Check URL:

http://<FE server IP>:<FE server port>/sdc1/rest/healthCheck

type section description

general SDC info in the main section

Frontend {
"healthCheckComponent": "FE",
"healthCheckStatus": "UP",
"version": "1.1.0-SNAPSHOT",
"description": "OK"
}

describe the version of the Catalog Frontend server

general Onboarding info in the onboarding section

{
"healthCheckComponent": "FE",
"healthCheckStatus": "UP",
"version": "1.1.0-SNAPSHOT",
"description": "OK"
}

describe the version of the Onboarding Frontend server

Logging

server location type description rolling

BE /data/logs/BE/2017_03_10.
stderrout.log

Jetty
server log

The log describes info regarding Jetty startup and execution the log
rolls daily

/data/logs/BE/SDC/SDC-BE
/audit.log

aplication
audit

An audit record is created for each operation in SDC rolls at 20
mb

/data/logs/BE/SDC/SDC-BE
/debug.log

aplication
logging

We can enable higher logging on demand by editing the logback.xml inside the server docker.
The file is located under: config/catalog-be/logback.xml.
This log holds the debug and trace level output of the application.

rolls at 20
mb

/data/logs/BE/SDC/SDC-BE
/error.log

aplication
logging

This log holds the info and error level output of the application. rolls at 20
mb

/data/logs/BE/SDC/SDC-BE
/transaction.log

aplication
logging

Not currently in use. will be used in future relases. rolls at 20
mb

/data/logs/BE/SDC/SDC-BE
/all.log

aplication
logging

On demand, we can enable log aggregation into one file for easier debugging. This is done by
editing the logback.xml inside the server docker.
The file is located under: config/catalog-be/logback.xml.
To allow this logger, set the value for this property to true <property scope="context" name="
enable-all-log" value="false" />
This log holds all logging output of the application.

rolls at 20
mb

FE /data/logs/FE/2017_03_10.
stderrout.log

Jetty
server log

The log describes info regarding the Jetty startup and execution the log
rolls daily

/data/logs/FE/SDC/SDC-FE
/debug.log

aplication
logging

We can enable higher logging on demand by editing the logback.xml inside the server docker.
The file is located under: config/catalog-fe/logback.xml.
This log holds the debug and trace level output of the application.

rolls at 20
mb

/data/logs/FE/SDC/SDC-FE
/error.log

aplication
logging

This log holds the Info and Error level output of the application. rolls at 20
mb

/data/logs/FE/SDC/SDC-FE
/all.log

aplication
logging

On demand we can enable log aggregation into one file for easier debuging, by editing the
logback.xml inside the server docker.
The file is located under: config/catalog-fe/logback.xml.
To allow this logger set this property to true <property scope="context" name="enable-all-log"
value="false" />

This log holds all the logging output of the application.

rolls at 20
mb

 The logs are mapped from the docker to an outside path so that on docker failure the logs will still be available.

to change the log level in sdc:

1.
2.
3.
4.

5.
6.
7.
8.

access the docker for FE or BE example docker exec -it <docker id > bash
go to config/catalog-fe/logback.xml
open the file for editing.
in the file you can change the log level:

<root level="INFO">
 <appender-ref ref="ASYNC_ERROR" />
 <appender-ref ref="ASYNC_DEBUG" />
 <appender-ref ref="AUDIT_ROLLING" />
 <appender-ref ref="ASYNC_TRANSACTION" />
 <if condition='property("enable-all-log").equalsIgnoreCase("true")'>
 <then>
 <appender-ref ref="ALL_ROLLING" />
 </then>
 </if>
</root>

<logger name="org.openecomp.sdc" level="INFO" />

change the root level to DEBUG to open all logs in SDC including the dependencies. (Note a lot of log output is created and it is hard to follow).
open the logger by a package to enable only sdc spcific logs.
it is important to note the opening the logs impacts the application performance so do not leave the system in debug level.
the log configuration is runtime editable so no restart is required for the docker, just save the file and that is enough.

	SDC Troubleshooting

