
OOM for Production-Grade Deployments
Introduction
The ONAP Operations Manager provides a set of capabilities that facilitate Carrier Grade deployments of ONAP. ONAP deployments need to be capable
of offering service while under adverse conditions typically with overall availability measured at five-nines or 99.999% uptime or about 5 minutes of
downtime per year. This requirement might be strict for an orchestration system, but keep in mind that ONAP’s closed loop control system could be
providing monitoring a control for one or more critical VNFs that need to meet stringent up-time requirements as found in the TL 9000 Quality Management

. System Measurements Handbook

The Road to High Availability
The progression of the ONAP project towards a fully Carrier Grade has started and will continue over the Beijing or possibly even subsequent
releases. The steps along this progression are roughly as follows:

Highly Available Kubernetes Deployments
Reliable and Repeatable Deployment
Health Monitoring
Component Recoverability
Centralized Logging
Intra Component Clustering
Pod Placement Rules
ONAP S/W Upgrades & Rollbacks
Geo-Redundant Deployments

For each of these steps the following sections describe the requirements in more detail and the technologies used to achieve it.

Highly Available Kubernetes Deployments

There is a high degree of variability possible in the deployment of Kubernetes. In some cases it may be installed and managed by hand, done with 3rd
party tools like or even provided by a cloud provider like Microsoft - Kubernetes has a description of the options . Rancher Azure Container Service here
Kubernetes provides guidance on creating deployments that may be suitable for carrier grade deployments of ONAP on their Building High-Availability

 wiki page.Clusters

Reliable and Repeatable Deployment

During the Amsterdam release OOM provided a set of capabilities to deploy some or all the ONAP components rapidly and efficiently as a cloud native
application with the Kubernetes container orchestration system (note that DCAE is an exception here as DCAE provides its own orchestration system).
Each of the components has a deployment specification that describes not only the containers and the container requirements but the relationships or
dependencies between the containers. These dependencies dictate the order in-which the containers are started for the first time such that such
dependencies are always met without arbitrary sleep times between container startups. For example, the SDC back-end container requires the Elastic-
Search, Cassandra and Kibana containers within SDC to be ready and is also dependent on DMaaP (or the message-router) to be ready before becoming
fully operational. Here is the deployment specification that describes these dependencies:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 app: sdc-be
 name: sdc-be
 namespace: "{{ .Values.nsPrefix }}-sdc"
spec:
 selector:
 matchLabels:
 app: sdc-be
 template:
 metadata:
 labels:
 app: sdc-be
 name: sdc-be
 annotations:
 pod.beta.kubernetes.io/init-containers: '[
 {
 "args": [
 "--container-name",
 "sdc-es",
 "--container-name",

http://www.tl9000.org/handbooks/measurements_handbook.html
http://www.tl9000.org/handbooks/measurements_handbook.html
https://rancher.com/kubernetes/
https://azure.microsoft.com/en-us/services/container-service/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/admin/high-availability/
https://kubernetes.io/docs/admin/high-availability/

 "sdc-cs",
 "--container-name",
 "sdc-kb"
],
 "command": [
 "/root/ready.py"
],
 "env": [
 {
 "name": "NAMESPACE",
 "valueFrom": {
 "fieldRef": {
 "apiVersion": "v1",
 "fieldPath": "metadata.namespace"
 }
 }
 }
],
 "image": "{{ .Values.image.readiness }}",
 "imagePullPolicy": "{{ .Values.pullPolicy }}",
 "name": "sdc-be-readiness"
 },
 {
 "args": [
 "--container-name",
 "dmaap"
],
 "command": [
 "/root/ready.py"
],
 "env": [
 {
 "name": "NAMESPACE",
 "value": "{{ .Values.nsPrefix }}-message-router"
 }
],
 "image": "{{ .Values.image.readiness }}",
 "imagePullPolicy": "{{ .Values.pullPolicy }}",
 "name": "sdc-dmaap-readiness"
 }
]'
 spec:
 containers:
 - env:
 - name: ENVNAME
 value: AUTO
 - name: HOST_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 image: {{ .Values.image.sdcBackend }}
 imagePullPolicy: {{ .Values.pullPolicy }}
 name: sdc-be
 volumeMounts:
 - mountPath: /usr/share/elasticsearch/data/
 name: sdc-sdc-es-es
 - mountPath: /root/chef-solo/environments/
 name: sdc-environments
 - mountPath: /etc/localtime
 name: sdc-localtime
 readOnly: true
 - mountPath: /var/lib/jetty/logs
 name: sdc-logs
 - mountPath: /var/log/onap
 name: sdc-logs-2
 - mountPath: /tmp/logback.xml
 name: sdc-logback
 lifecycle:
 postStart:
 exec:
 command: ["/bin/sh", "-c", "export LOG=wait_logback.log; touch $LOG; export SRC=/tmp/logback.xml;

export DST=/var/lib/jetty/config/catalog-be/; while [! -e $DST]; do echo 'Waiting for $DST...' >> $LOG; sleep
5; done; sleep 2; /bin/cp -f $SRC $DST; echo 'Done' >> $LOG"]
 ports:
 - containerPort: 8443
 - containerPort: 8080
 readinessProbe:
 tcpSocket:
 port: 8443
 initialDelaySeconds: 5
 periodSeconds: 10
 - image: {{ .Values.image.filebeat }}
 imagePullPolicy: {{ .Values.pullPolicy }}
 name: filebeat-onap
 volumeMounts:
 - mountPath: /usr/share/filebeat/filebeat.yml
 name: filebeat-conf
 - mountPath: /var/log/onap
 name: sdc-logs-2
 - mountPath: /usr/share/filebeat/data
 name: sdc-data-filebeat
 volumes:
 - name: filebeat-conf
 hostPath:
 path: /dockerdata-nfs/{{ .Values.nsPrefix }}/log/filebeat/logback/filebeat.yml
 - name: sdc-logs-2
 emptyDir: {}
 - name: sdc-data-filebeat
 emptyDir: {}
 - name: sdc-logback
 hostPath:
 path: /dockerdata-nfs/{{ .Values.nsPrefix }}/log/sdc/be/logback.xml
 - name: sdc-sdc-es-es
 hostPath:
 path: /dockerdata-nfs/{{ .Values.nsPrefix }}/sdc/sdc-es/ES
 - name: sdc-environments
 hostPath:
 path: /dockerdata-nfs/{{ .Values.nsPrefix }}/sdc/environments
 - name: sdc-localtime
 hostPath:
 path: /etc/localtime
 - name: sdc-logs
 hostPath:
 path: /dockerdata-nfs/{{ .Values.nsPrefix }}/sdc/logs
 imagePullSecrets:
 - name: "{{ .Values.nsPrefix }}-docker-registry-key"

Another feature that may assist in achieving a repeatable deployment in the presence of faults that may have reduced the capacity of the cloud is
assigning priority to the containers such that mission critical components have the ability to evict less critical components. Kubernetes provides this
capability with .Pod Priority and Preemption

Prior to having more advanced carrier grade features available, the ability to at least be able to re-deploy ONAP (or a subset of) reliably provides a level of
confidence that should an outage occur the system can be brought back on-line predictably.

Backup and Restore
A critical factor in being able to recover from an ONAP outage is to ensure that critical state isn't lost after a failure. Much like ephemeral storage on VMs;
any state information stored within a container will be lost once the container is restarted - containers are managed as . To ensure that Cattle, not Pets
critical state information is retained after a failure, the OOM deployment specifications for the ONAP components use the Kubernetes concept of Persistent

, an external storage facility that has its own lifecycle. The use of a persistent volume is specified in the ONAP deployment specifications. Here is Volumes
an example from the sdnc db-deployment.yaml:

https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: sdnc-dbhost
 namespace: "{{ .Values.nsPrefix }}-sdnc"
spec:
 selector:
 matchLabels:
 app: sdnc-dbhost
 template:
 metadata:
 labels:
 app: sdnc-dbhost
 name: sdnc-dbhost
 spec:
 containers:
 - env:
 - name: MYSQL_ROOT_PASSWORD
 value: openECOMP1.0
 - name: MYSQL_ROOT_HOST
 value: '%'
 image: {{ .Values.image.mysqlServer }}
 imagePullPolicy: {{ .Values.pullPolicy }}
 name: sdnc-db-container
 volumeMounts:
 - mountPath: /etc/localtime
 name: localtime
 readOnly: true
 - mountPath: /var/lib/mysql
 name: sdnc-data
 ports:
 - containerPort: 3306
 readinessProbe:
 tcpSocket:
 port: 3306
 initialDelaySeconds: 5
 periodSeconds: 10
 volumes:
 - name: localtime
 hostPath:
 path: /etc/localtime
 - name: sdnc-data
 persistentVolumeClaim:
 claimName: sdnc-db
 imagePullSecrets:
 - name: "{{ .Values.nsPrefix }}-docker-registry-key"

At the bottom of the deployment specification is a list of the volumes, localtime and sdnc-data which uses an external persistentVolumeClaim of sdnc-
db. This claim is specified as follows:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: "{{ .Values.nsPrefix }}-sdnc-db"
 namespace: "{{ .Values.nsPrefix }}-sdnc"
 labels:
 name: "{{ .Values.nsPrefix }}-sdnc-db"
spec:
 capacity:
 storage: 2Gi
 accessModes:
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Retain
 hostPath:
 path: /dockerdata-nfs/{{ .Values.nsPrefix }}/sdnc/data

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: sdnc-db
 namespace: "{{ .Values.nsPrefix }}-sdnc"
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 2Gi
 selector:
 matchLabels:
 name: "{{ .Values.nsPrefix }}-sdnc-db"

Many different types of storage are supported by this capability such as: GCEPersistentDisk, AWSElasticBlockStore, AzureFile, AzureDisk, FC (Fibre
Channel), FlexVolume, Flocker, NFS, iSCSI, RBD (Ceph Block Device), CephFS, Cinder (OpenStack block storage), Glusterfs, VsphereVolume, Quobyte
Volumes, HostPath (Single node testing only), VMware Photon, Portworx Volumes, ScaleIO Volumes, and StorageOS.

As critical state is stored outside of the ONAP containers on a storage media specific to the cloud environment, specific instructions on how to backup and
restore such storage is outside of the scope of ONAP.

Health Monitoring

All highly available systems include at least one facility to monitor the health of components within the system. Such health monitors are often used as
inputs to distributed coordination systems (such as , , or) and monitoring systems (such as or). Within ONAP isetcd zookeeper consul nagios zabbix Consul
the monitoring system of choice and deployed by OOM in two parts. A three-way, centralized Consul server cluster is deployed as a highly available
monitor of all of the ONAP components. The Consul server provides a user interface that allows a user to graphically view the current health status of all
of the ONAP components for which agents have been created - a sample from the ONAP Integration labs follows. Monitoring of ONAP components is
configured in the agents within JSON files and stored in gerrit under the .consul-agent-config

https://github.com/coreos/etcd
https://zookeeper.apache.org/
https://www.consul.io/
https://www.nagios.com/?gclid=EAIaIQobChMIoLyB17GM1wIVBS5pCh3oJwBHEAAYAiAAEgII9vD_BwE
https://www.zabbix.com/
https://www.consul.io/
https://gerrit.onap.org/r/gitweb?p=oom.git;a=tree;f=kubernetes/config/docker/init/src/config/consul/consul-agent-config;h=b39b0f967ff124525ca30a6244f19ea7c7cf98ea;hb=refs/heads/master

Initially the Consul agents are using the same health monitoring facilities as the robot test infrastructure which are typically just validating that the end-point
is reachable. Some health checks already support more advanced checking - such as validating that a database is able to create, update and delete an
entry. Consul exposes an API that allows external agents to use the results of the health check, such as the Kubernetes "liveness" probes described
below.

Component Recoverability

OOM deploys ONAP with Kubernetes defined by deployment specifications as mentioned earlier. These same deployment specifications are also used to
implement automatic recoverability of ONAP components when individual components fail. Once ONAP is deployed, a " " probe starts checking the liveness
health of the components after a specified startup time. These liveness probes can simply check that a port is available, that a built-in health check is
reporting good health, or that the Consul health check is positive. Should a liveness probe indicate a failed container it will be restarted as described in the
deployment specification. Should the deployment specification indicate that there are one or more dependencies to this container or component (for
example a dependency on a database) the dependency will be satisfied before the container/component is restarted. This mechanism ensures that, after a
failure, all of the ONAP components restart successfully. Note that, during the Amsterdam release, deployment specifications were created for all ONAP
components but not all of these deployment specifications are restartable (idempotent). Further work is required during the Beijing release to ensure
recoverability of all the ONAP components.

Centralized Logging

An important tool in achieving minimal downtime is the ability to rapidly diagnose problems and determine the root cause. The Logging Enhancements
 have been building a centralized log collection system based on the and a collector container that is instantiated alongside Project Elastic Stack Filebeat

the containers for each of the ONAP components. Here is an example from the deployment specification:aai-traversal

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://wiki.onap.org/display/DW/Logging+Enhancements+Project+Proposal
https://wiki.onap.org/display/DW/Logging+Enhancements+Project+Proposal
https://www.elastic.co/products
https://www.elastic.co/products/beats/filebeat
https://gerrit.onap.org/r/gitweb?p=oom.git;a=blob_plain;f=kubernetes/aai/templates/aai-traversal-deployment.yaml;hb=refs/heads/master

 spec:
 containers:
 - name: aai-traversal
[...]
 - name: filebeat-onap-aai-traversal
 image: {{ .Values.image.filebeat }}
 imagePullPolicy: {{ .Values.pullPolicy }}
 volumeMounts:
 - mountPath: /usr/share/filebeat/filebeat.yml
 name: filebeat-conf
 - mountPath: /var/log/onap
 name: aai-traversal-logs
 - mountPath: /usr/share/filebeat/data
 name: aai-traversal-filebeat

Filebeat collects logs from within the namespace of each component and ships them to the centralized logging stack that was deployed by OOM with the
other ONAP components. Users are able to point their web browsers to the Kibana component and see all of the raw logs as well as predefined
dashboards that show the state of ONAP in real-time.

Intra Component Clustering

The OOM project is not responsible for creating highly available versions of all of the ONAP components, but does provide via Kubernetes many built in
facilities to build clustered, highly available systems including: with load-balancers (including support for), Services External Load Balancers Ingress

, and . Some of the open-source projects that form the basis of ONAP components directly support clustered configurations like Resources Replica Sets
ODL with instructions on or MariaDB . . Setting Up Clustering Getting Started with MariaDB Galera Cluster

OOM uses the Kubernetes service abstraction to provide a consistent access point for each of the ONAP components, independent of the pod or container
architecture of that component. For example, the SDN-C component may introduce OpenDaylight clustering as some point and change the number of
pods in this component to three or more, but this change will be isolated from the other ONAP components by the service abstraction. A service can
include a load balancer on its ingress to distribute traffic between the pods and even react to dynamic changes in the number of pods if they are part of a
replica set. A replica set is a construct that is used to describe the desired state of the cluster. For example 'replicas: 3' indicates to Kubernetes that a
cluster of 3 instances is the desired state. Should one of the members of the cluster fail, a new member will be automatically started to replace it.

Some of the ONAP components many need a more deterministic deployment; for example to enable intra-cluster communication. For these applications
the component can be deployed as a Kubernetes which will maintain a persistent identifier for the pods and thus a for the StatefulSet stable network id
pods. For example: the pod names might be web-0, web-1, web-{N-1} for N 'web' pods with corresponding DNS entries such that intra service
communication is simple even if the pods are physically distributed across multiple nodes. An example of how these capabilities can be used is described
in the tutorial. Running Consul on Kubernetes

The page describes a working example of many of these techniques working together.SDN-C Clustering on Kubernetes

Pod Placement Rules

OOM will use the rich set of Kubernetes node and pod affinity / anti-affinity rules to minimize the chance of a single failure resulting in a loss of ONAP
service. Node affinity / anti-affinity is used to guide the Kubernetes orchestrator in the placement of pods on nodes (physical or virtual machines). For
example:

if a container used Intel DPDK technology the pod may state that it as affinity to an Intel processor based node, or
geographical based node labels (such as the Kubernetes standard zone or region labels) may be used to ensure placement of a DCAE complex
close to the VNFs generating high volumes of traffic thus minimizing networking cost. Specifically, if nodes were pre-assigned labels East and
West, the pod deployment spec to distribute pods to these nodes would be:

nodeSelector:
 failure-domain.beta.kubernetes.io/region: {{ .Values.location }}

Where "l is specified in the file used to deploy one DCAE cluster and " is specified in a secondocation: West" values.yaml location: East" values.
 (see for more information about configuration files like the file).yaml file OOM Configuration Management values.yaml

Node affinity can also be used to achieve geographic redundancy if pods are assigned to multiple failure domains. For more information refer to Assigning
. Kubernetes has a comprehensive system called that can be used to force the container orchestrator to repel pods Pods to Nodes Taints and Tolerations

from nodes based on static events (an administrator assigning a taint to a node) or dynamic events (such as a node becoming unreachable or running out
of disk space). There are no plans to use taints or tolerations in the ONAP Beijing release.

Pod affinity / anti-affinity is the concept of creating a spacial relationship between pods when the Kubernetes orchestrator does assignment (both initially
 . For example, one might choose to co-located all of the ONAP SDC containers an in operation) to nodes as explained in Inter-pod affinity and anti-affinity

on a single node as they are not critical runtime components and co-location minimizes overhead. On the other hand, one might choose to ensure that all
of the containers in an ODL cluster (SDNC and APPC) are placed on separate nodes such that a node failure has minimal impact to the operation of the
cluster. An example of how pod affinity / anti-affinity is shown below::

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
http://docs.opendaylight.org/en/stable-nitrogen/getting-started-guide/common-features/clustering.html
https://mariadb.com/kb/en/library/getting-started-with-mariadb-galera-cluster/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#stable-network-id
https://github.com/kelseyhightower/consul-on-kubernetes
https://wiki.onap.org/display/DW/SDN-C+Clustering+on+Kubernetes
https://wiki.onap.org/display/DW/OOM+Configuration+Management
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature

Pod Affinity / Anti-Affinity

apiVersion: v1
kind: Pod
metadata:
 name: with-pod-affinity
spec:
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - S1
 topologyKey: failure-domain.beta.kubernetes.io/zone
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - S2
 topologyKey: kubernetes.io/hostname
 containers:
 - name: with-pod-affinity
 image: gcr.io/google_containers/pause:2.0

 This example contains both podAffinity and podAntiAffinity rules, the first rule is is a must (requiredDuringSchedulingIgnoredDuringExecution) while the
second will be met pending other considerations (preferredDuringSchedulingIgnoredDuringExecution).

ONAP S/W Upgrades & Rollbacks

Kubernetes has built-in capabilities to enable the upgrade of pods without causing a loss of the service being provided by that pod or pods (if configured as
a cluster). As described in the OOM User Guide, ONAP components provide an abstracted ‘service’ end point with the pods or containers providing this
service hidden from other ONAP components by a load balancer. This capability is used during upgrades to allow a pod with a new image to be added to
the service before removing the pod with the old image. This ‘make before break’ capability ensures minimal downtime.

When upgrading a cluster a parameter controls the minimum size of the cluster during the upgrade while another parameter controls the maximum number
of nodes in the cluster. For example, SNDC configured as a 3-way ODL cluster might require that during the upgrade no fewer than 2 pods are available
at all times to provide service while no more than 5 pods are ever deployed across the two versions at any one time to avoid depleting the cluster of
resources. In this scenario, the SDNC cluster would start with 3 old pods then Kubernetes may add a new pod (3 old, 1 new), delete one old (2 old, 1 new),
add two new pods (2 old, 3 new) and finally delete the 2 old pods (3 new). During this sequence the constraints of the minimum of two pods and maximum
of five would be maintained while providing service the whole time.

Initiation of an upgrade is triggered by changes in the deployment specifications. For example, if the image specified for one of the pods in the SDNC
deployment specification were to change (i.e. point to a new Docker image in the nexus3 repository – commonly through the change of a deployment
variable), the sequence of events described in the previous paragraph would be initiated.

Unfortunately, not all upgrades are successful. In recognition of this the lineup of pods within an ONAP deployment is tagged such that an administrator
may force the ONAP deployment back to the previously tagged configuration or to a specific configuration, say to jump back two steps if an incompatibility
between two ONAP components is discovered after the two individual upgrades succeeded. This rollback functionality gives the administrator confidence
that in the unfortunate circumstance of a failed upgrade the system can be rapidly brought back to a known good state.

This process of rolling upgrades while under service is illustrated in this short YouTube video showing a of a web application Zero Downtime Upgrade
while under a 10 million transaction per second load.

Many of the ONAP components contain their own databases which are used to record configuration or state information. The schemas of these databases
may change from version to version in such a way that data stored within the database needs to be migrated between versions. If such a migration script is
available it can be invoked during the upgrade (or rollback) by . Two such hooks are available, PostStart and PreStop, which Container Lifecycle Hooks
containers can access by registering a handler against one or both. Note that it is the responsibility of the ONAP component owners to implement the hook
handlers – which could be a shell script or a call to a specific container HTTP endpoint – following the guidelines listed on the Kubernetes site. Lifecycle
hooks are not restricted to database migration or even upgrades but can be used anywhere specific operations need to be taken during lifecycle
operations.

https://youtu.be/9C6YeyyUUmI
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/

Note that although OOM uses Kubernetes facilities to minimize the effort required of the ONAP component owners to implement a successful rolling
upgrade strategy there are other considerations that must be taken into consideration. For example, external APIs – both internal and external to ONAP –
should be designed to gracefully accept transactions from a peer at a different software version to avoid deadlock situations. Embedded version codes in
messages may facilitate such capabilities.

Geo-Redundant Deployments

As described in the Pod Placement Rules section, OOM enables the placement of specific pods into specific zones or regions thus providing protection
from a single cluster failure. These placement rules can also be used to distribute specific resources, such as a DCAE cluster, close to the VNFs that
DCAE is monitoring. To build such a distributed network operators will use Kubernetes to link multiple clusters.Federation

The Kubernetes federation control plane enables clusters that are geographically separated to function as a single deployment with DNS servers and load
balancers distributing work across the clusters. Federation also enables hybrid clouds say with nodes being provided by a private OpenStack cluster and
a Microsoft Azure cluster. Note that clusters can each scale to thousands of nodes so it is unlikely that capacity will be the sole reason for deploying ONAP
within a federation of clusters.

List of Epics
The following list of JIRA Epics represent the development activities required to complete the OOM related carrier grade activities (to be confirmed):

Key Summary T Description

OOM-
109

Platform Centralized
Logging

As an ONAP operator, I want to have centralized logging for each of onap component, so that I can emit
standardized, machine-readable logging output.

See: https://wiki.onap.org/display/DW/LOG+M1+Release+Planning

Acceptance Criteria

ONAP components logs are centralized into a common repository
ONAP components logs are searchable
ONAP Transactions are logged and tracable across all ONAP components
ONAP components logs are standardized in order to facilitate the search
ONAP components logs are machine readable.

 OOM-6 Automated platform
deployment on Docker
/Kubernetes

As an ONAP operator, I want to deploy ONAP into a fully containerized architecture so that I can easily deploy the
platform on any infrastructure.

Acceptance criteria

MVP components are deployed with K8S with a single click. MVP components are:
AAI
SO
Message-router
SDC
VID
SO (without TOSCA support)
SDNC
Robot
APPC
DCAE Gen1
DCAE Gen2 Controller (DCAE services themselves will be managed using HEAT)
Portal
VF-C
Multi-VIM
MSB
Policy
Stretch: SO with TOSCA support

https://kubernetes.io/docs/concepts/cluster-administration/federation/
https://jira.onap.org/browse/OOM-109?src=confmacro
https://jira.onap.org/browse/OOM-109?src=confmacro
https://jira.onap.org/browse/OOM-109?src=confmacro
https://jira.onap.org/browse/OOM-109?src=confmacro
https://jira.onap.org/browse/OOM-109?src=confmacro
https://wiki.onap.org/display/DW/LOG+M1+Release+Planning
https://jira.onap.org/browse/OOM-6?src=confmacro
https://jira.onap.org/browse/OOM-6?src=confmacro
https://jira.onap.org/browse/OOM-6?src=confmacro
https://jira.onap.org/browse/OOM-6?src=confmacro
https://jira.onap.org/browse/OOM-6?src=confmacro

OOM-
10

Platform configuration
management

As an ONAP operator, I want to centrally manage ONAP platform and components configurations so that I can
enable multi-instance, scalable/resilient container platform deployment.

New requirement 20180315 - verify that healthcheck is working for each retrofitted component

Acceptance Criteria

All ONAP components are parameterized and fully configurable
Ability for operators to manage independent platform environments without any hardcoded parameters
Configurability includes at least, but not limited to:

Credentials, Secrets
Environment parameters: host names, node ports, IP addresses, URLs/Paths
Environment variables
Versions, Image names
Logging levels
Runtime parameters, e.g. JVM size
High-availability, resiliency, clustering parameters
Auto-Scaling, auto-healing policies

OOM-
412

Handle branching in
OOM configuration - 16
Nov

WE will need a story to parameterize the downloading of branched artifacts in branches - also see (dup OOM-411
of) as well for the docker imagesOOM-476

OOM-
486

HELM upgrade from 2.3
to 2.8.0

 update 20180124: we are good for 2.7.2 on Rackspace and AWS as well - vnc-portal working now (Note:
rancher 1.6.10 upgraded - next test 1.6.12-14)

Update: Rancher 1.6.14, Helm 2.8.0, Docker 17.03.2, Kubernetes 1.8.6, Kubectl 1.9.0 OK

old........

Team, we need to do the 1.6.14 rancher and helm 2.8 client (upgrade rancher from 2.6) and cover off the ram and
vnc-portal issues - will post links shortly

We need to fix vnc-portal running on helm 2.6+ - see ---- ----OOM-441

Also raising priority by request as several teams run into this issue running helm 2.5+

One issue I covered off is the new docker image - it came out a couple months before the helm update - and also
has the issue

Full integration testing on multiple deployment environment will certify our move from Rancher 1.6.10/Helm 2.3

20180124: upgrade procedure for

https://jira.onap.org/browse/OOM-10?src=confmacro
https://jira.onap.org/browse/OOM-10?src=confmacro
https://jira.onap.org/browse/OOM-10?src=confmacro
https://jira.onap.org/browse/OOM-10?src=confmacro
https://jira.onap.org/browse/OOM-10?src=confmacro
https://jira.onap.org/browse/OOM-412?src=confmacro
https://jira.onap.org/browse/OOM-412?src=confmacro
https://jira.onap.org/browse/OOM-412?src=confmacro
https://jira.onap.org/browse/OOM-412?src=confmacro
https://jira.onap.org/browse/OOM-412?src=confmacro
https://jira.onap.org/browse/OOM-412?src=confmacro
https://jira.onap.org/browse/OOM-411
https://jira.onap.org/browse/OOM-476
https://jira.onap.org/browse/OOM-486?src=confmacro
https://jira.onap.org/browse/OOM-486?src=confmacro
https://jira.onap.org/browse/OOM-486?src=confmacro
https://jira.onap.org/browse/OOM-486?src=confmacro
https://jira.onap.org/browse/OOM-486?src=confmacro
https://jira.onap.org/browse/LOG-333

AWS
ubuntu@ip-172-31-13-94:~$ wget http://storage.googleapis.com/kubernetes-helm
/helm-v2.7.2-linux-amd64.tar.gz
--2018-01-24 22:20:04-- http://storage.googleapis.com/kubernetes-helm/helm-
v2.7.2-linux-amd64.tar.gz
Resolving storage.googleapis.com (storage.googleapis.com)... 209.85.203.128,
2607:f8b0:4004:808::2010
Connecting to storage.googleapis.com (storage.googleapis.com)|209.85.203.128
|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 12166338 (12M) [application/x-tar]
Saving to: ‘helm-v2.7.2-linux-amd64.tar.gz’
helm-v2.7.2-linux-amd64.tar.gz 100%
[==
======>] 11.60M 7.27MB/s in 1.6s
2018-01-24 22:20:06 (7.27 MB/s) - ‘helm-v2.7.2-linux-amd64.tar.gz’ saved
[12166338/12166338
ubuntu@ip-172-31-13-94:~$ tar -zxvf helm-v2.7.2-linux-amd64.tar.gz
linux-amd64/
linux-amd64/README.md
linux-amd64/LICENSE
linux-amd64/helm
ubuntu@ip-172-31-13-94:~$ sudo mv linux-amd64/helm /usr/local/bin/helm

ubuntu@ip-172-31-13-94:~$ helm version
Client: &version.Version{SemVer:"v2.7.2", GitCommit:"
8478fb4fc723885b155c924d1c8c410b7a9444e6", GitTreeState:"clean"}
Server: &version.Version{SemVer:"v2.3.0", GitCommit:"
d83c245fc324117885ed83afc90ac74afed271b4", GitTreeState:"clean"}
ubuntu@ip-172-31-13-94:~$ helm init --upgrade
Creating /home/ubuntu/.helm
Creating /home/ubuntu/.helm/repository
Creating /home/ubuntu/.helm/repository/cache
Creating /home/ubuntu/.helm/repository/local
Creating /home/ubuntu/.helm/plugins
Creating /home/ubuntu/.helm/starters
Creating /home/ubuntu/.helm/cache/archive
Creating /home/ubuntu/.helm/repository/repositories.yaml
Adding stable repo with URL: https://kubernetes-charts.storage.googleapis.com
Adding local repo with URL: http://127.0.0.1:8879/charts
$HELM_HOME has been configured at /home/ubuntu/.helm.
Tiller (the Helm server-side component) has been upgraded to the current
version
Happy Helming!

ubuntu@ip-172-31-13-94:~$ helm version
Client: &version.Version{SemVer:"v2.7.2", GitCommit:"
8478fb4fc723885b155c924d1c8c410b7a9444e6", GitTreeState:"clean"}
Server: &version.Version{SemVer:"v2.7.2", GitCommit:"
8478fb4fc723885b155c924d1c8c410b7a9444e6", GitTreeState:"clean"}

OOM-
590

OOM Wiki documentation
of deployment options

Raised at request on the 20180117 OOM meeting

 Deliverables

WIKI deployment pages - eventually to copy to read the docs

6 issues

https://jira.onap.org/browse/OOM-590?src=confmacro
https://jira.onap.org/browse/OOM-590?src=confmacro
https://jira.onap.org/browse/OOM-590?src=confmacro
https://jira.onap.org/browse/OOM-590?src=confmacro
https://jira.onap.org/browse/OOM-590?src=confmacro
https://jira.onap.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Doom+and+issuetype+in+%28epic%29+and+fixVersion+%3D+%22Beijing+Release%22++order+by+rank++++++&src=confmacro

	OOM for Production-Grade Deployments

