
Beijing Scope
During the Beijing release the following capabilities are added or enhanced from the OOM capabilities
available in the Amsterdam release:

Deploy - with built-in component dependency management (including multiple clusters,
federated deployments across sites, and anti-affinity rules)
Configure - unified configuration across all ONAP components
Monitor - real-time health monitoring feeding to a Consul UI and Kubernets
Heal - failed ONAP containers are recreated automatically
Scale - cluster ONAP services to enable seamless scaling
Upgrade - change-out containers or configuration with little or no service impact
Delete - cleanup individual containers or entire deployments

The following sections describe these areas in more detail.

Mike Elliott demonstrated many of these concepts at the virtual face-to-face meeting, shown here:

In addition to the capabilities listed below note that the OOM deployment of ONAP in Beijing is now done
within a single where in Amsterdam a namespace was created for each of the Kubernetes namespace
ONAP components.

Deploy - with built-in component
dependency management (including
multiple clusters, federated
deployments across sites, and anti-
affinity rules)

The OOM team with assistance from the ONAP project teams,
have built a comprehensive set of Kubernetes deployment
specifications, yaml files very similar to TOSCA files, that
describe the composition of each of the ONAP components and
the relationship within and between components. These
deployment specifications describe the desired state of an
ONAP deployment and instruct the Kubernetes container
manager as to how to maintain the deployment in this
state. These dependencies dictate the order in-which the
containers are started for the first time such that such
dependencies are always met without arbitrary sleep times
between container startups. For example, the SDC back-end
container requires the Elastic-Search, Cassandra and Kibana
containers within SDC to be ready and is also dependent on

DMaaP (or the message-router) to be ready - where ready implies the built-in "readiness" probes succeeded - before becoming fully operational.

When an initial deployment of ONAP is requested the current state of the system is NULL so ONAP is deployed by the Kubernetes manager as a set
of Docker containers on one or more predetermined hosts. The hosts could be physical machines or virtual machines. When deploying on virtual
machines the resulting system will be very similar to “Heat” based deployments, i.e. Docker containers running within a set of VMs, the primary
difference being that the allocation of containers to VMs is done dynamically with OOM and statically with “Heat”.

Example SO deployment descriptor file shows SO's dependency on its mariadb component:

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

(M)SO deployment specification excerpt

..
kind: Deployment
metadata:
 name: mso
..
spec:
..

 initContainers:
 - command:
 - /root/ready.py
 args:
 - --container-name
 - mariadb
..
 containers:
 - command:
 - /tmp/start-jboss-server.sh
 image: {{ .Values.image.mso }}
 imagePullPolicy: {{ .Values.pullPolicy }}
 name: mso
..

Pod Placement Rules

OOM will use the rich set of Kubernetes node and pod affinity / anti-affinity rules to minimize the chance of a single failure resulting in a loss of ONAP
service. Node affinity / anti-affinity is used to guide the Kubernetes orchestrator in the placement of pods on nodes (physical or virtual machines). For
example:

if a container used Intel DPDK technology the pod may state that it as affinity to an Intel processor based node, or
geographical based node labels (such as the Kubernetes standard zone or region labels) may be used to ensure placement of a DCAE
complex close to the VNFs generating high volumes of traffic thus minimizing networking cost. Specifically, if nodes were pre-assigned labels
East and West, the pod deployment spec to distribute pods to these nodes would be:

nodeSelector:
 failure-domain.beta.kubernetes.io/region: {{ .Values.location }}

Where "location: West" is specified in the values.yaml file used to deploy one DCAE cluster and "location: East" is specified in a second values.
yaml file (see for more information about configuration files like the values.yamlfile).OOM Configuration Management

Node affinity can also be used to achieve geographic redundancy if pods are assigned to multiple failure domains. For more information refer to Assign
. Kubernetes has a comprehensive system called that can be used to force the container orchestrator to ing Pods to Nodes Taints and Tolerations

repel pods from nodes based on static events (an administrator assigning a taint to a node) or dynamic events (such as a node becoming unreachable
or running out of disk space). There are no plans to use taints or tolerations in the ONAP Beijing release.

Pod affinity / anti-affinity is the concept of creating a spacial relationship between pods when the Kubernetes orchestrator does assignment (both
 . For example, one might choose to co-located all of the ONAP SDC initially an in operation) to nodes as explained in Inter-pod affinity and anti-affinity

containers on a single node as they are not critical runtime components and co-location minimizes overhead. On the other hand, one might choose to
ensure that all of the containers in an ODL cluster (SDNC and APPC) are placed on separate nodes such that a node failure has minimal impact to
the operation of the cluster. An example of how pod affinity / anti-affinity is shown below:

https://wiki.onap.org/display/DW/OOM+Configuration+Management
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature

Pod Affinity / Anti-Affinity

apiVersion: v1
kind: Pod
metadata:
 name: with-pod-affinity
spec:
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - S1
 topologyKey: failure-domain.beta.kubernetes.io/zone
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - S2
 topologyKey: kubernetes.io/hostname
 containers:
 - name: with-pod-affinity
 image: gcr.io/google_containers/pause:2.0

This example contains both podAffinity and podAntiAffinity rules, the first rule is is a must (requiredDuringSchedulingIgnoredDuringExecution) while
the second will be met pending other considerations (preferredDuringSchedulingIgnoredDuringExecution).

Preemption

Another feature that may assist in achieving a repeatable deployment in the presence of faults that may have reduced the capacity of the cloud is
assigning priority to the containers such that mission critical components have the ability to evict less critical components. Kubernetes provides this
capability with .Pod Priority and Preemption

Prior to having more advanced production grade features available, the ability to at least be able to re-deploy ONAP (or a subset of) reliably provides a
level of confidence that should an outage occur the system can be brought back on-line predictably.

The overall Epic for OOM based deployment of ONAP is - OOM-6 Getting issue details... STATUS with the following status:

During the Beijing release the 'initContainers' constructs were updated from the previous beta implementation to the current released syntax under the

JIRA Story - OOM-406 Getting issue details... STATUS

https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
https://jira.onap.org/browse/OOM-6
https://jira.onap.org/browse/OOM-406

Configure unified configuration across -
all ONAP components

Each project within ONAP has its own configuration data
generally consisting of: environment variables, configuration
files, and database initial values. Many technologies are used
across the projects resulting in significant operational complexity
and an inability to apply global parameters across the entire
ONAP deployment. OOM solves this problem by introducing a
common configuration technology, , that provide a Helm charts
hierarchical configuration configuration with the ability to
override values with higher level charts or command line
options. For example, if one wishes to change the OpenStack
instance oam_network_cidr and ensure that all ONAP
components reflect this change, one could change the
vnfDeployment/openstack/oam_network_cidr value in the global
configuration file as shown below:

global configuration excerpt

nsPrefix: onap
nodePortPrefix: 302
apps: consul msb mso message-router sdnc vid robot portal policy appc aai sdc dcaegen2 log cli multicloud
clamp vnfsdk aaf kube2msb
dataRootDir: /dockerdata-nfs

docker repositories
repository:
 onap: nexus3.onap.org:10001
 oom: oomk8s
 aai: aaionap
 filebeat: docker.elastic.co

image:
 pullPolicy: Never

vnf deployment environment
vnfDeployment:
 openstack:
 ubuntu_14_image: "Ubuntu_14.04.5_LTS"
 public_net_id: "e8f51956-00dd-4425-af36-045716781ffc"
 oam_network_id: "d4769dfb-c9e4-4f72-b3d6-1d18f4ac4ee6"
 oam_subnet_id: "191f7580-acf6-4c2b-8ec0-ba7d99b3bc4e"
 oam_network_cidr: "192.168.30.0/24"
 username: "vnf_user"
 api_key: "vnf_password"
 tenant_name: "vnfs"
 tenant_id: "47899782ed714295b1151681fdfd51f5"
 region: "RegionOne"
 keystone_url: "http://1.2.3.4:5000"
 flavour_medium: "m1.medium"
 service_tenant_name: "services"
 dmaap_topic: "AUTO"
 demo_artifacts_version: "1.1.0-SNAPSHOT"

The migration from the disparate configuration methodologies to Helm charts is tracked under the - OOM-460 Getting issue details... STATUS

 JIRA story. Within each of the projects a new configuration repository contains all of the project specific configuration artifacts. As changes are made
within the project, it's the responsibility of the project team to make appropriate changes to the configuration data. The

 Epic tracks this work with the following status: - OOM-10 Getting issue details... STATUS

https://github.com/kubernetes/helm/blob/master/docs/charts.md
https://jira.onap.org/browse/OOM-460
https://jira.onap.org/browse/OOM-10

Monitor - real-time health monitoring
feeding to a Consul UI and Kubernets

All highly available systems include at least one facility to
monitor the health of components within the system. Such
health monitors are often used as inputs to distributed
coordination systems (such as , , or) and etcd zookeeper consul
monitoring systems (such as or). OOM provides nagios zabbix
two mechanims to monitor the real-time health of an ONAP
deployment:

a Consul GUI for a human operator or downstream monitoring
systems and Kubernetes liveness probes that enable automatic
healing of failed containers, and
a set of liveness probes which feed into the Kubernetes
manager which are described in the Heal section.

Within ONAP is the monitoring system of choice and Consul
deployed by OOM in two parts:

a three-way, centralized Consul server cluster is deployed as a
highly available monitor of all of the ONAP components,and

a number of Consul agents.

The Consul server provides a user interface that allows a user to graphically view the current health status of all of the ONAP components for which
agents have been created - a sample from the ONAP Integration labs follows. Monitoring of ONAP components is configured in the agents within
JSON files and stored in gerrit under the , here is an example from the AAI model loader:consul-agent-config

aai-model-loader-health.json

{
 "service": {
 "name": "A&AI Model Loader",
 "checks": [
 {
 "id": "model-loader-process",
 "name": "Model Loader Presence",
 "script": "/consul/config/scripts/model-loader-script.sh",
 "interval": "15s",
 "timeout": "1s"
 }
]
 }
}

To see the real-time health of a deployment go to:

https://github.com/coreos/etcd
https://zookeeper.apache.org/
https://www.consul.io/
https://www.nagios.com/?gclid=EAIaIQobChMIoLyB17GM1wIVBS5pCh3oJwBHEAAYAiAAEgII9vD_BwE
https://www.zabbix.com/
https://www.consul.io/
https://gerrit.onap.org/r/gitweb?p=oom.git;a=tree;f=kubernetes/config/docker/init/src/config/consul/consul-agent-config;h=b39b0f967ff124525ca30a6244f19ea7c7cf98ea;hb=refs/heads/master

 http://<kubernetes IP>:30270/ui/

where a GUI much like the following will be found:

The JIRA Epic tracks this work with the following status: - OOM-7 Getting issue details... STATUS

Heal - failed ONAP containers are
recreated automatically

https://jira.onap.org/browse/OOM-7

OOM deploys ONAP with Kubernetes defined by deployment
specifications as mentioned earlier. These same deployment
specifications are also used to implement automatic
recoverability of ONAP components when individual
components fail. Once ONAP is deployed, a " " probe liveness
starts checking the health of the components after a specified
startup time. These liveness probes can simply check that a
port is available, that a built-in health check is reporting good
health, or that the Consul health check is positive. Should a
liveness probe indicate a failed container it will be terminated
and a replacement will be started in its place - containers are
ephemeral. Should the deployment specification indicate that
there are one or more dependencies to this container or
component (for example a dependency on a database) the
dependency will be satisfied before the replacement container
/component is started. This mechanism ensures that, after a
failure, all of the ONAP components restart successfully.

For example, to monitor the SDNC component has following
liveness probe can be found in the SDNC DB deployment
specification:

sdnc db liveness probe

livenessProbe:
 exec:
 command: ["mysqladmin", "ping"]
 initialDelaySeconds: 30
 periodSeconds: 10
 timeoutSeconds: 5

The 'initialDelaySeconds' control the period of time between the readiness probe succeeding and the liveness probe starting. 'periodSeconds' and
'timeoutSeconds' control the actual operation of the probe.

Note that containers are inherently ephemeral so the healing action destroys failed containers and any state information within it. To avoid a loss of
state, a persistent volume should be used to store all data that needs to be persisted over the re-creation of a container. Persistent volumes have
been created for the database components of each of the projects and the same technique can be used for all persistent state information.

Note that, during the Amsterdam release, deployment specifications were created for all ONAP components but not all of these deployment
specifications are restartable (idempotent). Further work is required during the Beijing release to ensure recoverability of all the ONAP components.

Scale - cluster ONAP services to
enable seamless scaling

The OOM project is not responsible for creating highly available
versions of all of the ONAP components, but does provide via
Kubernetes many built in facilities to build clustered, highly
available systems including: with load-balancers Services
(including support for), External Load Balancers Ingress

, and . Some of the open-source projects Resources Replica Sets
that form the basis of ONAP components directly support
clustered configurations like ODL with instructions on Setting Up

 or MariaDB Clustering Getting Started with MariaDB Galera
. . Cluster

OOM uses the Kubernetes service abstraction to provide a
consistent access point for each of the ONAP components,
independent of the pod or container architecture of that
component. For example, the SDN-C component may introduce

OpenDaylight clustering as some point and change the number of pods in this component to three or more, but this change will be isolated from the
other ONAP components by the service abstraction. A service can include a load balancer on its ingress to distribute traffic between the pods and
even react to dynamic changes in the number of pods if they are part of a replica set. A replica set is a construct that is used to describe the desired
state of the cluster. For example 'replicas: 3' indicates to Kubernetes that a cluster of 3 instances is the desired state. Should one of the members of
the cluster fail, a new member will be automatically started to replace it.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
http://docs.opendaylight.org/en/stable-nitrogen/getting-started-guide/common-features/clustering.html
http://docs.opendaylight.org/en/stable-nitrogen/getting-started-guide/common-features/clustering.html
https://mariadb.com/kb/en/library/getting-started-with-mariadb-galera-cluster/
https://mariadb.com/kb/en/library/getting-started-with-mariadb-galera-cluster/

Some of the ONAP components many need a more deterministic deployment; for example to enable intra-cluster communication. For these
applications the component can be deployed as a Kubernetes which will maintain a persistent identifier for the pods and thus a StatefulSet stable

 for the pods. For example: the pod names might be web-0, web-1, web-{N-1} for N 'web' pods with corresponding DNS entries such that network id
intra service communication is simple even if the pods are physically distributed across multiple nodes. An example of how these capabilities can be
used is described in the tutorial. Running Consul on Kubernetes

The page describes a working example of many of these techniques working together.SDN-C Clustering on Kubernetes

Upgrade - change-out containers or
configuration with little or no service
impact

Kubernetes has built-in capabilities to enable the upgrade of
pods without causing a loss of the service being provided by that
pod or pods (if configured as a cluster). As described in the
OOM User Guide, ONAP components provide an abstracted
‘service’ end point with the pods or containers providing this
service hidden from other ONAP components by a load
balancer. This capability is used during upgrades to allow a pod
with a new image to be added to the service before removing
the pod with the old image. This ‘make before break’ capability
ensures minimal downtime.

When upgrading a cluster a parameter controls the minimum
size of the cluster during the upgrade while another parameter
controls the maximum number of nodes in the cluster. For
example, SNDC configured as a 3-way ODL cluster might
require that during the upgrade no fewer than 2 pods are

available at all times to provide service while no more than 5 pods are ever deployed across the two versions at any one time to avoid depleting the
cluster of resources. In this scenario, the SDNC cluster would start with 3 old pods then Kubernetes may add a new pod (3 old, 1 new), delete one old
(2 old, 1 new), add two new pods (2 old, 3 new) and finally delete the 2 old pods (3 new). During this sequence the constraints of the minimum of two
pods and maximum of five would be maintained while providing service the whole time.

Initiation of an upgrade is triggered by changes in the deployment specifications. For example, if the image specified for one of the pods in the SDNC
deployment specification were to change (i.e. point to a new Docker image in the nexus3 repository – commonly through the change of a deployment
variable), the sequence of events described in the previous paragraph would be initiated.

Unfortunately, not all upgrades are successful. In recognition of this the lineup of pods within an ONAP deployment is tagged such that an
administrator may force the ONAP deployment back to the previously tagged configuration or to a specific configuration, say to jump back two steps if
an incompatibility between two ONAP components is discovered after the two individual upgrades succeeded. This rollback functionality gives the
administrator confidence that in the unfortunate circumstance of a failed upgrade the system can be rapidly brought back to a known good state.

This process of rolling upgrades while under service is illustrated in this short YouTube video showing a of a web application Zero Downtime Upgrade
while under a 10 million transaction per second load.

Many of the ONAP components contain their own databases which are used to record configuration or state information. The schemas of these
databases may change from version to version in such a way that data stored within the database needs to be migrated between versions. If such a
migration script is available it can be invoked during the upgrade (or rollback) by . Two such hooks are available, PostStart Container Lifecycle Hooks
and PreStop, which containers can access by registering a handler against one or both. Note that it is the responsibility of the ONAP component
owners to implement the hook handlers – which could be a shell script or a call to a specific container HTTP endpoint – following the guidelines listed
on the Kubernetes site. Lifecycle hooks are not restricted to database migration or even upgrades but can be used anywhere specific operations need
to be taken during lifecycle operations.

Note that although OOM uses Kubernetes facilities to minimize the effort required of the ONAP component owners to implement a successful rolling
upgrade strategy there are other considerations that must be taken into consideration. For example, external APIs – both internal and external to
ONAP – should be designed to gracefully accept transactions from a peer at a different software version to avoid deadlock situations. Embedded
version codes in messages may facilitate such capabilities.

OOM uses Helm K8S package manager to deploy ONAP components. Each component is arranged in a packaging format called a chart – a
collection of files that describe a set of k8s resources. Helm allows for rolling upgrades of the ONAP component deployed. To upgrade a component
Helm release you will need an updated Helm chart. The chart might have modified, deleted or added values, deployment yamls, and more.

To get the release name use:

helm ls

To easily upgrade the release use:

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#stable-network-id
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#stable-network-id
https://github.com/kelseyhightower/consul-on-kubernetes
https://wiki.onap.org/display/DW/SDN-C+Clustering+on+Kubernetes
https://youtu.be/9C6YeyyUUmI
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/

helm upgrade [RELEASE] [CHART]

To roll back to a previous release version use:

helm rollback [flags] [RELEASE] [REVISION]

for example, to upgrade the onap-mso helm release to the latest MSO container release v1.1.2:

Edit mso valus.yaml which is part of the chart

Change “mso: :10001/openecomp/mso:v1.1.1” tonexus3.onap.org

“mso: :10001/openecomp/ ”nexus3.onap.org mso:v1.1.2

From the chart location run:
helm upgrade onap-mso ./

The previous mso pod will be terminated and a new mso pod with an updated mso container will be created.

Delete - cleanup individual containers
or entire deployments

http://nexus3.onap.org
http://nexus3.onap.org

	Beijing Scope

