Homing and Allocation Service (HAS)

Introduction

HAS in Service Instantiation workflows

HAS Architecture (R2)

HAS - Active-Active High Availability Architecture

Lifecycle of a Homing request in HAS

Use cases
© Residential vCPE: vCPE Homing Use Case
© 5G RAN: Homing 5G RAN VNFs

A sample heuristic greedy algorithm of HAS

Guide to writing Homing Specifications

Triaging Homing decisions

HAS Developer guide

HAS Code information
o Gerrit: https://gerrit.onap.org/r/#/admin/projects/optf/has
© Master Branch : https://git.onap.org/optf/has/
© Beijing Branch: https://github.com/onap/optf-has/tree/beijing
O Beijing Release Artifacts:

Introduction

OOF-HAS is an policy-driven placement optimizing service (or homing service) that allows ONAP to deploy services automatically across multiple sites
and multiple clouds. It enables placement based on a wide variety of policy constraints including capacity, location, platform capabilities, and other service
specific constraints.

HAS is a distributed resource broker that enables automated policy-driven optimized placement of services on a global heterogeneous platform using
ONAP. Given a set of service components (based on SO decomposition flows) and requirements for placing these components (driven by policies), HAS
finds optimal resources (cloud regions or existing service instances) to home these service components such that it meets all the service requirements.
HAS is architected as an extensible homing service that can accommodate a growing set of homing objectives, policy constraints, data sources and
placement algorithms. It is also service-agnostic by design and can easily onboard new services with minimal effort. Therefore, HAS naturally extends to a
general policy-driven optimizing placement platform for wider range of services, e.g., DCAE micro-services, ECOMP control loops, server capacity, etc.
Finally, HAS provides an traceable mechanism for what-if analysis which is critical for ease of understanding a homing recommendation and resolving
infeasibility scenarios.

HAS in Service Instantiation workflows

Below is an illustration of HAS interactions with other ONAP components to enable Policy driven homing. The homing policy constraints have been
expanded (and categorized) to highlight the range of constraints that could be provided to HAS for determining the homing solution. The figure also shows
how HAS uses a plugin-based approach to allow an extensible set of constraints and data models.

A&AI

Available
Cloud/service
instances

Multi Cloud (MC)

Cluster Capabilities,
Capacity, Topology

SDNC

Infra Class - Resource

Utilization/Reservation Capacity

| DMaaP Replication
% v

[

Cloud Agnostic Std. Data Model from MC, Other plugins

HOMING (OF-HAS)

Constraint Model plugins

Algorithm
plugins

[o)

Decomposed Service from SO
components
(Demands)

to SO | Optimized Homing]
recommendations

EEOe EEOe

from Policy
Homing Constraints

Latency Site Reliability
Customer J

Cluster SW Capabilities

)

Aggregate Capacity
(Tenant, Hosts etc.)

Distance

Regulatory Bandwidth

il

Constraint Categories

B Service Requirements
@ Runtime Metrics

(] Optimization Objectives
B Runtime Queries

@@ Cloud Capabilities

Proximity/Colocation
(virtual & physical)

ecurl

Diversity

(Disaster Zones)

bl

Distance
(Customer)
I Cost (Provider)
Load balancing
Provider,

(Availability zones,
Affinity/Anti-Affinity)

Cluster HW Capabilities
(SRIOV, Hardware
encryption, Transcoding,
NUMA boundaries)

Aggregate Utilizati
(Tenant, Hosts etc.)

Capacity check

——)

More information on how homing constraints are specified can be found at OOF-HAS Homing Specification Guide, and a sample homing template has

been drawn up for residential VCPE Homing Use Case.

https://wiki.onap.org/display/DW/OOF-HAS+Homing+Specification+Guide
https://wiki.onap.org/display/DW/vCPE+Homing+Use+Case

HAS Architecture (R2)

HAS Architecture (R2)

Homing solution to SO Homing Request from SO based on

HAS can run in a completely Active/Active mode (after reservations, if | SDC models + runtime parameters
required)
| _HOMING-API |
| OSDF (policy translation, | Fetch homing

validation) i~ policies for reques

A&AI MC Homing }Request with policy constraints
I HAS-API

Data/Information plugins (] ! HAS-Controller

Optimization HAS-Opti mizer/Solver Homing

HAS Component Algorithm solution
plugins

S,
(process) U - - (without
[[3 @8 (constraint Model plugins ([-

OSDF Component

— . . * HAS uses a simple
— ; Homing solution (after abstraction of gets/puts,
Intra HAS component HAS-Reservation reservations) Sl D agRae

messaging

== Asynchronous/polling

HAS - Active-Active High Availability Architecture

HAS is implemented based on an active/active high availability architecture (HAS - Active-Active High Availability Architecture), where each component of
HAS can scale horizontally independent of the others. This also allows HAS to have highly scalable hybrid deployment architectures (OOF Beijing R2
OOM Deployment Planning).

Lifecycle of a Homing request in HAS

https://wiki.onap.org/display/DW/HAS+-+Active-Active+High+Availability+Architecture
https://wiki.onap.org/display/DW/HAS+-+Active-Active+High+Availability+Architecture
https://wiki.onap.org/display/DW/OOF+Beijing+R2+OOM+Deployment+Planning
https://wiki.onap.org/display/DW/OOF+Beijing+R2+OOM+Deployment+Planning

Controller

Translating
Template

N

\ \
\\\
N ,?@S ;
N
~ /0/7 el

Use cases
Residential vCPE: vCPE Homing Use Case

5G RAN: Homing 5G RAN VNFs

A sample heuristic greedy algorithm of HAS

All candidates for the Best candidate for the

demand that meets all demand
constraints

Demands (VNFs All potential candidates

for each demand

Apply constraints

for demand Find best

vGMUX

Homing Solution

|
i
n

Apply constraints relating this demand with all previously solved demands

Apply constraints

for demand Find best

i
i

| B

Apply constraints relating this demand with all previously solved demands

Apply constraints

for demand Find best

‘I

<
2

https://wiki.onap.org/display/DW/vCPE+Homing+Use+Case
https://wiki.onap.org/display/DW/Homing+5G+RAN+VNFs

Guide to writing Homing Specifications

HAS is service agnostic by design and the OOF-HAS Homing Specification Guide can help create homing specifications for new services.

Triaging Homing decisions

Triaging HAS homing decisions

HAS Developer guide

The HAS Developer Guide will give more information on how to deploy HAS, and contributing to the HAS code.

HAS Code information

Gerrit: https://gerrit.onap.org/r/#/admin/projects/optf/has
Master Branch : https://git.onap.org/optf/has/

Beijing Branch: https://github.com/onap/optf-has/tree/beijing
Beijing Release Artifacts:

https://nexus.onap.org/content/repositories/releases/org/onap/optf/has/optf-has-conductor/1.1.1/ (binaries)
https://nexus.onap.org/content/repositories/releases/org/onap/optf/osdf/optf-osdf/1.1.1/ (binaries)

nexus3.onap.org:10001/onap/optf-has:1.1.1 (docker image)
nexus3.onap.org:10001/onap/optf-osdf:1.1.1 (docker image)

https://wiki.onap.org/display/DW/OOF-HAS+Homing+Specification+Guide
https://wiki.onap.org/display/DW/Triaging+HAS+homing+decisions
https://wiki.onap.org/display/DW/HAS+Developer+Guide
https://gerrit.onap.org/r/#/admin/projects/optf/has
https://git.onap.org/optf/has/
https://github.com/onap/optf-has/tree/beijing
https://nexus.onap.org/content/repositories/releases/org/onap/optf/has/optf-has-conductor/1.1.1/
https://nexus.onap.org/content/repositories/releases/org/onap/optf/osdf/optf-osdf/1.1.1/
http://nexus3.onap.org:10001/onap/optf-has:1.1.1
http://nexus3.onap.org:10001/onap/optf-osdf:1.1.1

	Homing and Allocation Service (HAS)

