Certificate and Secret Management Service (CSM)

1 Project Name:
2 Meetings
3 Project description:
4 Scope:
© 4.1 Certificate Management Service
= 4.1.1 The below diagram illustrates Best Practices of Certificate Enrollment that is end-point initiated.
® 4.1.2 The below diagram illustrates Certificate Enrollment that is Middle Man initiated

4.1.3 This diagram shows mapping of Certificate Provisioing in ONAP context.
4.1.4 The below diagram details the architechture blocks used previously in detail:
4.1.5 The below diagram the same architecture blocks as above with a Sidecar service:
4.1.6

® 4.1.7 Use Case Sequence Diagrams

© 4.2 Secret Management Service
® 4.2.1 The below diagram illustraces the Secret Service High Level Flow in an ONAP Context
® 4.2.2 The below diagram illustrates how a micro service will use the Secret Client Agent to talk to the Secret Service to store or
retrieve passwords.
0 4.3 SoftHSMv2 +TPM2-Plugin

® 5 Architecture Alignment:
0 51
© 5.2 Other Information:
© 5.3 Key Project Facts:
o]
o]

5.4 Release Components Name:
5.5 Resources committed to the Release:

Project Name:

® Proposed name for the project: Certi fi cate and Secret Managenent Service
® Proposed nane for the repository : csm

Meetings

® [csm] Team ONAP7, Thr. UTC 04:00 / Thr. China 12:00 / Wed Eastern 23:00 / Wed Pacific 20:00
® Slides presented at Beijing Developer Forum, Santa Clara.

|XL\J
N

OMNAP-Sec..nal pptx

Project description:

This project proposal address two areas in the ONAP deployment structure from a security perspective.

1. Secure Communication between microservices.
® Current state and need
© ONAP consists of multiple micro services which talk to each other.
There are two types of communication.

a. REST API based communication.
b. DMAAP publish/subscriber based communication.

Since the communication is mostly over HTTP, there is a need to protect services from:

® Bad actors stealing the data on the wire.
® Receiving messages from bad actors
® Requirement:
© Enable TLS1.2+ for securing communication among the services. Java and Python libraries do support this functionality, but
easy certificate provisioning is required for Mutual TLS. This project aims to simplify PKI - certificate provisioning via a simple
and secure CA service that stores private keys (CA private key at CA and user certificate private keys) securely using hardware
security.

#

2.

Storage of sensitive information such as passwords.

® Current state and gaps
o Many services in ONAP use password based authentication. Eg: Database servers, publish/subscribe brokers etc.
O Passwords are stored in plain text files in many services.
© With multiple instances of these services, the attach surface area becomes very big.
© Hence there is a need to ensure that attack surface related to password exposure is reduced.

® Requirement:
© Need for secure secret management. Services are expected to get the secret only on needed basis using secret reference and

remove the secrets once they are used up.

This project aims to provide solutions to the above needs by:

NOUAWNE

. Provide Certificate Management Service (CA Service) to provision signed certificates required for Mutual TLS.

Provide Certificate Request Agent SDK

. Provide hardware security plugin for storing private keys and for performing crypto operations that require private keys.
. GUI/CLI for Certificate Management Service

. Provide Secret Management Service for adding/deleting/updating/reading secrets.

. Provide Secret Client Agent SDK

. GUI/CLI for Secret Management Service.

Scope:

Certificate Management Service

The proposed project will provide a Certificate Management Service which will be used for certificate enrollment by micro services. The ultimate goal is to
make sure that all micro services communicate securely between each other using the CA for enrolliment and then use TLS to establish secure
communication channels between each other.

The Certificate Management Service will support the following:

RESTful API support for Certificate Request Operations by micro services
© Generate Certificate
O Revocation of Certificate
O Usage report updates
© Token Authentication
An Admin interface
© That will generate a self signed CA
O Upload any admin generated CA Cert + Private Key pair
© Usage usage reports on each key
© Revoke certificates
O Get CA Certificate in PEM/DER format
O Token service to provide temporary tokens

There will also be a Client that will be part of the project written in either Python or Java that will be used to communicate with the CA Broker Service to
enroll certificates.
It will have the following roles/abilities:

® Generate RSA/ECDSA key pair using PKCS11

Securely store the private key.
© Store the private key using TPM if it is available
PKCS10 CSR generation
Communicates with the previously described Certificate Management Service over REST API
Periodically generates a usage report
Certificate Renewal
Discovery of Certificate Management Service

The below diagram illustrates Best Practices of Certificate Enrollment that is end-point initiated.

In Micro Services, before it communicates with other
micro services, it needs to get certificate enrolled by CA.

Certificate Management Service
(Acts as CA) 1. Typically at startup, generates RSA/ECDSA public/private key
pair.

2. Generates PKCS10 CSR (Certificate request) — Which involves
signing the message with private key.

3. Request Certificate by sending PKCS10 request to CA.

4, CAverifies that genuine service is requesting for certificate,
verifies PKCS10 request, generates X.509v3 certificate, signs
it using CA certificate-private key.

5. Sends signed X.509v3 certificate and CA certificate.

6. Service stores the information.

7. It uses this information during TLS handshake to establish
secure communication channels.

« Good for Micro Services that are long lived.

* Possibility of keeping the private key secure within container
service.

+ Good for any workloads (Local/remote)

« Slow startup — Need for certificate auto provisioning.

The below diagram illustrates Certificate Enroliment that is Middle Man initiated

As part of service instantiation, provisioning service provisions
certificate and private key (either via environment variables,

A . Certificate
Provisioning service E] volume backend, cloud-init)

(Middle man) " Management Service
(Acts as CA) Provisioning Service is deployed with token/authentication
credentials with permissions that allow CA to issue certificates.

For Every Service instance

1. Generates RSA/ECDSA key pair, generates subject hame,
PKCS10 CSR

2. Request signed certificate by sending CSR to CMS

3. CMS verifies the token/auth-credentials, generates x.509v3
certificate and signs it using CA private key

4. CMS sends the x.509v3 certificate to Provisioning service

5. Provisioning service sends certificate + private key to service.

6. Service uses these credentials to create Mutual TLS session

Service with others

* Good for Micro services that are short lived and where startup
performance is very important.
* Disadvantage : Keys are clear

This diagram shows mapping of Certificate Provisioing in ONAP context.

=

Certificate Credential

ManagementService
with Internal CA

Auth
Service
(AAF)

ONAP
Operations

It is expected that Certificate management and Auth services
are brought up first.

Creating CA Instance (Typically once per deployment)

1. Admin user creates authentication session by passing username/password
OR grant token given by Auth Service.

2. CMS validatesthe Admin user credentials using Auth Service

3. Admin userinstructs CMS to create self sighed CA.

ONAP (Rest of) Service instance bring up (Getting the CMS-

token)

4. Operations Admin provides username/password or Auth grant token to CMS
to get the CMS-token.

5. CMS validates the credentials with Auth Service.

6. CMS returns the CMS-token.

7. CMS-tokenis passed to Service as part of its bring up

ONAP Service Certificate provisioning (Service startup time)

8. Aspart of bring up, generates RSA/ECDSA key pair and PKCS10 (CSR) request.
9. Sends PKCS10 CSR with CMS-token to CMS. CMS validates the token. If valid
generates certificate and signs it with its CA. Returns certificate and CA

certificate.
ONAP TLS Communication
10. ONAP service uses certificate and private key during TLS handshake

The below diagram details the architechture blocks used previously in detail:

Service
Existing Certificate

ONAP Service Client
logic agent

Java Sun PKCS11 Provider

SoftHSMv2

SGX TPM
Plugin Plugin

SW store

Internal CA

Certificate Credential

Management Service

Custom CA

Vault Plugin o o plugin

External CA
Service

HashiCorp

Vault - PKI
TPM/SGX
Plugin

The below diagram the same architecture blocks as above with a Sidecar service:

Service

pod

Existing ONAP Service
container

Side car

Proxy (e.g. Certificate
envoy) Client agent

Openssl
SoftHSM

SGX/TPM

Internal CA

Certificate Credential

Management Service

Custom CA
Service Plugin

Vault Plugin

HashiCorp

Vault - PKI
TPM/SGX
Plugin

External CA
Service

Use Case Sequence Diagrams

Administrator

CMS

CA Service Creation

Vault

GoCrypto

SoftHSM

Hardware TPMISGX

Request a CA service

|
I
I
I
with self signed CA _Jl

Hardware TPM
will be used

if present

:4. ____________
|

»
|

| Validate Parameters

PKC511 Request to generate key pair

|

| Store Public Key and

| PKCS11 Private Key Handle |
| Ll
|

Success

—

» Return Public Key and Private Key Handle
________________ .

q

Y

Send Key Pair

Generation Request

Return Public Key

-5t

and Private Key Handle

|-
™

: Generates Key Pair

Client Certificate provisioning

App

Client Agent

I

|

Generate Certificate request .J
!

|

g Return Valid Certificates(valid and found) 1

Java Crypto SunPKCS11

SoftHSM

Hardware TPM/SGX CA

(first time or invalid) Generate key pair request

Return Public key

Generate key pair request

. S —

Return public ke:
le P! Y

Generate key pair request

I
|
|
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|

PKCS10 CSR request with Token

Return public key and handle |

»
»

Store private key

Return Certificates I

Signed client and CA ceniﬁcaie
________________ Fe===c=ccccac=cc==

F——— e —

F—— — - — - — — L

Token Generation

OMNAF Operations CMS ALF
| |
I I
Request Token _ | |
> |
| Validate Parameters :
::I I
I
Verify Credentials and |
Check Authorizations [
g
[
I
I

Return Token

Return Success if User Credentials
are Valid and if User has

and Authonization
for Token Creation

Permissions to Create a Token q

Request to generate

Temporary Token

Validate Credentials

I
Return Generated Token

Provide Token to App During Bring-Up

|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
<
I
|
|
|

Y g

Certificate Revocation

Administrator CMS
| |
| |
| Request a user certificate |
| revocation |
| >
| |
| PR
|
| |
I I
I I
I I
| - ------
I I
| Success |
€ e 1

Wault

Validate Parameters

Revoke Certificate

Success

L

Client Certificate Renewal

App Client Agent Java Crypto SunPKCS11 SoftHSM

If certificate is

nearing expiry

Generate New Certificate

Hardware TPM/SGX CA

Return Public Key

Hardware TPM
will be used

if present

Send Key Pair
Generation Reguest

I |
I |
I |
I |
I |
I |
I |
L [
gl |
: PKCS511 Request to :
I Generate Key Pair o
P
I |
I |
I |
I [
I |
I |
I |
I |
I |
I |
! <
L Fetum Generated Pubic Key _ |
I |
| |
-1 |

|
Return Public Key and |
Private Key Handle |

1
PKCS510 Request to Sign public key

[
>

Generates Key Pair

Notify of Certificate |
Renewal

Update Certificate Used
for TLS Communication

|

! >
| | |
| Signed Client and CA Certificates |
[i 3 et 1T 1

Secret Management Service

The project will also provide a Secret Management Service with the following features and capabilities:

® Support multiple Secret domains

© Each domain can be used to multiple secrets
© Each domain is associated with various policies

Each secret can have multiple key value pairs
Certificate based authentication

Authenticate users with AAF

Token based authentication

Securely store secrets using AES encryption

O Use TPM/SGX for key storage if available
® RESTful API support for ADD, UPDATE, DELETE of secrets

The below diagram illustraces the Secret Service High Level Flow in an ONAP Context

It is expected that Certificate management and Auth

services are brought up first.

A
Secret Management uth

Service

5 - Service
(AAF)

Creating Secret Domain

1. Admin user creates authentication session by passing
username/password OR grant token given by Auth Service.

2. SMS validates the Admin user credentials using Auth Service

3. Admin user instructs SMS to create secret domain (Policies, CA-
Cert, Set of Subject name prefix to allow vs permissions)

Service instance bring up (Assumes that service already

got the certificate provisioned)

4. Service makes Secret service request via TLS. (Create Secret/Read
Secret)

5. SMS validates the certificate credentials, if valid and if policy allows
it, perform the operation. Also, create and return SMS-token for

Service future operations.

6. SMS returns the results

Service uses secrets for service specific processing

The below diagram illustrates how a micro service will use the Secret Client Agent to talk to the Secret
Service to store or retrieve passwords.

. Secret Service
Service

Secret Management
Secret Client agent Service

Vault Plugin ~ Sustom secret External
- Server plugin Secret Service

HashiCorp
Vault

TPM/SGX plugin

SoftHSMv2 +TPM2-Plugin

This project provides SoftHSMv2 with an extended capabilities to leverage TPM2.0 hardware capabilities to generate RSA/ECC keypairs and import keys
generated outside of TPM2.0 module. This is achieved by modifying SoftHSMv2, adding an adapter layer between SofhHSMv2 and TPM2-Plugin.

Bullseys coverage tool is used to measure the codes coverage:

sshsm.cov - Mozilla Firefox

sshsm.cov

<« c @ @ file lisey 9 i htmt 150% | e @ ¥ mn @ =
2018-03-08 09:35:37
2 Folders | ‘% Classes sshsm.cov BulseyeCoverage 8.13.46
a
‘g sshsm.coy Name Function Uncovered Condition/decision Uncovered
= SoftHSMv2/ coverage functions coverage conditions/decisions
SoftHSMv2/src/ [sshsm.cov 83%EEEEE 305m 49% = 5868 ==

I softHSMv2/sre/bin/

|2 softHSMv2/src/bin/common/

|2 SoftHSMv2/sre/bin/dump/

I softHSMv2/src/bin/keyconv/

|2 softHSMv2/sre/bin/util/

12 softHSMv2/sre/lib/

|2 softHSMv2/sre/lib/common/

|2 SoftHSMv2/srellib/cryptol

|2 softHSMv2/srellib/cryptoltest/

|2 softHsMv2/src/lib/data_mar/

|2 softHSMv2/srellib/data_magr/test/
| softHSMv2/src/lib/handle_mar/

|2 softHSMv2/srellib/handle_maritest/
|23 softHSMv2/sre/lib/object_store/

|2 softHSMv2/sre/lib/object_store/test/
|2 SoftHSMv2/srellib/session_mar/
|23 SoftHSMv2/sre/lib/session_mgr/test/
|2 softHsMv2/sre/lib/slot_mar/

|2 SoftHSMv2/srellib/slot_mar/test/
I3 softHSMv2/src/lib/test/

2 softHsSMv2 83% EEEEE 305@ 49% . 5868 wmm

(|

Architecture Alignment:

CSM is a common service across ONAP components.

OMNAP Operations Manager (OOM)]

Portal Framework, U-UI, ONAP CLI T T T T T T T T T T T T e T T e T T T T

Extern A_PI Fra;n;work

i
1
]
i
1
Resource Onboarding :
Policy L2l Service |
]) Correlation Engine . ARAI/ESR)
Service & Product Design Framework (Holmes) Orchestration :
]
Policy Creation & Validati ~Common !
511"\:::: DMaaP CCSDK Logging Micro Services Bus (MSB) AAF :
1
]
1
Multi-ViM/Cloud SDN-C Application Virtual Function]
Infrastructure (L0-L3 Controller) Controller Controller 1
Adaptation Layer (L4-L7) (ETSI-aligned) 1
- — i
__ 1
Catalog
External Systems | 3™ Party Controller SVNFM EMS

Recipe/Eng Rules & Policy Distribution

Environment

Other Information:

® Seed code:
O Vault project: https://github.com/hashicorp/vault

https://github.com/hashicorp/vault

Key Project Facts:

Primary Contact : Srinivasa Addepalli

Facts Info

PTL (first and last name)

Jira Project Name TBD
Jira Key TBD
Project ID TBD
Link to Wiki Space TBD

Release Components Name:

Note: refer to existing project for details on how to fill out this table

Components Components Maven Components Description
Name Repository name Group ID
sms aaf/sms org.onap.aaf. Secret Management Service that will contain the webservice as well as client code for managing
sms and accessing secrets.
sshsm aaf/sshsm org.onap.aaf. A repository for softhsm modifications and hardware security plugin
sshsm

Resources committed to the Release:
Note 1: No more than 5 committers per project. Balance the committers list and avoid members representing only one company.

Note 2: It is critical to complete all the information requested, that we help to fast forward the onboarding process.

Role First Name Last Name Linux Foundation ID Email Address Location
PTL Kiran Kamineni kirankamineni kiran.k.kamineni@intel.com Santa Clara, CA
Committers | Kiran Kamineni kirankamineni kiran.k.kamineni@intel.com Santa Clara, CA
Girish Havaldar giri hg0071052@techmahindra.com Bangalore, India
Contributors | Vamshi Namilikonda vamshi.nemalikonda vn00480215@techmahindra.com Pune, India
Manjunath Ranganathaiah = mrangana manjunath.ranganathaiah@intel.com = Santa Clara, CA, USA

Ning Sun ningsun ning.sun@intel.com Santa Clara, CA, USA

https://wiki.onap.org/display/~saddepalli
https://wiki.onap.org/pages/viewpage.action?pageId=4719420
mailto:vn00480215@techmahindra.com
mailto:manjunath.ranganathaiah@intel.com
mailto:ning.sun@intel.com

	Certificate and Secret Management Service (CSM)

