
ONAP Application Logging Guidelines v1.2 (Beijing)

About This Document
Introduction
How to Log

EELF
SLF4J
Providers

Logback
Log4j 2.X
Log4j 1.X

What to Log
Messages, Levels, Components and Categories
Context

MDCs
Logging
Serializing
MDC - RequestID
MDC - InvocationID
MDC - ServiceName
MDCs - the Rest

Examples
SDC-BE

Markers
Logging
Serializing
Marker - ENTRY
Marker - EXIT
Marker - INVOKE
Marker - SYNCHRONOUS

Errorcodes
Output Format

Text Output
XML Output

Output Location
Configuration

Locations
Reconfiguration
Overrides
Archetypes

Retention
Types of EELF Logs

Audit Log
Metrics Log
Error Log
Debug Log
Engine.out

New ONAP Component Checklist
What's New

About This Document

Official R1 documentation snapshot in https://onap.readthedocs.io/en/latest
/submodules/logging-analytics.git/docs/
This document specifies logging conventions to be followed by ONAP component applications.

ONAP logging is intended to support operability, debugging and reporting on ONAP. These guidelines address:

Events that are written by ONAP components.
Propagation of transaction and invocation information between components.
MDCs, Markers and other information that should be attached to log messages.
Human- and machine-readable output format(s).
Files, locations and other conventions.

Java is assumed, but conventions may be implemented by non-Java components.

Original ONAP Logging guidelines: https://wiki.onap.org/download/attachments/1015849/ONAP%20application%20logging%20guidelines.pdf?api=v2

Introduction

https://onap.readthedocs.io/en/latest/submodules/logging-analytics.git/docs/
https://onap.readthedocs.io/en/latest/submodules/logging-analytics.git/docs/
https://wiki.onap.org/download/attachments/1015849/ONAP%20application%20logging%20guidelines.pdf?api=v2

1.
2.

The purpose of ONAP logging is to capture information needed to operate, troubleshoot and report on the performance of the ONAP platform and its
constituent components. Log records may be viewed and consumed directly by users and systems, indexed and loaded into a datastore, and used to
compute metrics and generate reports.

The processing of a single client request will often involve multiple ONAP components and/or subcomponents (interchangeably referred to as ‘application’
in this document). The ability to track flows across components is critical to understanding ONAP’s behavior and performance. ONAP logging uses a
universally unique RequestID value in log records to track the processing of every client request through all the ONAP components involved in its
processing.

A reference configuration of can be deployed using . Elastic Stack ONAP Operations Manager

This document gives conventions you can follow to generate conformant, indexable logging output from your component.

How to Log
ONAP prescribes conventions. The use of certain APIs and providers is recommended, but they are not mandatory. Most components log via or EELF SLF

 to a provider like or .4J Logback Log4j

EELF

EELF is the , described at . Event and Error Logging Framework https://github.com/att/EELF

EELF abstracts your choice of logging provider, and decorates the familiar Logger contracts with features like:

Localization.
Error codes.
Generated wiki documentation.
Separate audit, metric, security and debug logs.

EELF is a facade, so logging output is configured in two ways:

By selection of a logging provider such as Logback or Log4j, typically via the classpath.
By way of a provider configuration document, typically or . See .logback.xml log4j.xml Providers

SLF4J

SLF4J is a logging facade, and a humble masterpiece. It combines what's common to all major, modern Java logging providers into a single interface. This
decouples the caller from the provider, and encourages the use of what's universal, familiar and proven.

EELF also logs via SLF4J's abstractions.

Providers

Logging providers are normally enabled by their presence in the classpath. This means the decision may have been made for you, in some cases implicitly
by dependencies. If you have a strong preference then you can change providers, but since the implementation is typically abstracted behind EELF or
SLF4J, it may not be worth the effort.

Logback

Logback is the most commonly used provider. It is generally configured by an XML document named . See .logback.xml Configuration

Log4j 2.X

Log4j 2.X is somewhat less common than Logback, but equivalent. It is generally configured by an XML document named . See .log4j.xml Configuration

Log4j 1.X

Strongly discouraged from Beijing onwards, since 1.X is EOL, and since it does not support escaping, so its output may not be machine-readable. See http
.s://logging.apache.org/log4j/1.2/

This affects OpenDaylight-based components like SDNC and APPC, since ODL releases prior to bundled Log4j 1.X, and make it difficult to Carbon
replace. The project targets ODL Carbon, so remaining instances of Log4j 1.X should disappear by the time of the Beijing Common Controller SDK Project
release.

What to Log
The purpose of logging is to capture diagnostic information.

https://www.elastic.co/products
https://wiki.onap.org/display/DW/ONAP+Operations+Manager+Project
https://github.com/att/EELF
https://www.slf4j.org/
https://www.slf4j.org/
https://logback.qos.ch/
https://logging.apache.org/log4j/2.x/
https://github.com/att/EELF
https://www.slf4j.org/
https://logging.apache.org/log4j/1.2/
https://logging.apache.org/log4j/1.2/
https://www.opendaylight.org/what-we-do/current-release
https://wiki.onap.org/display/DW/Common+Controller+SDK+Project

An important aspect of this is analytics, which requires tracing of requests between components. In a large, distributed system such as ONAP this is critical
to understanding behavior and performance.

Messages, Levels, Components and Categories

It isn't the aim of this document to reiterate the basics, so advice here is general:

Use a logger. Consider using EELF.
Write log messages in English.
Write meaningful messages. Consider what will be useful to consumers of logger output.
Use errorcodes to characterise exceptions.
Log at the appropriate level. Be aware of the volume of logs that will be produced.
Log in a machine-readable format. See Conventions.
Log for analytics as well as troubleshooting.

Others have written extensively on this:

http://www.masterzen.fr/2013/01/13/the-10-commandments-of-logging/
https://www.loggly.com/blog/how-to-write-effective-logs-for-remote-logging/
And so on.

Context

TODO: more on the importance of transaction ID propagation.

MDCs

A Mapped Diagnostic Context (MDC) allows an arbitrary string-valued attribute to be attached to a Java thread. The MDC's value is then emitted with each
message logged by that thread. The set of MDCs associated with a log message is serialized as unordered name-value pairs (see).Text Output

A good discussion of MDCs can be found at . https://logback.qos.ch/manual/mdc.html

MDCs:

Must be set as early in invocation as possible.
Must be unset on exit.

Logging

Via SLF4J:

import java.util.UUID;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.slf4j.MDC;
// ...
final Logger logger = LoggerFactory.getLogger(this.getClass());
MDC.put("SomeUUID", UUID.randomUUID().toString());
try {
 logger.info("This message will have a UUID-valued 'SomeUUID' MDC attached.");
 // ...
}
finally {
 MDC.clear();
}

EELF doesn't directly support MDCs, but its default provider (where is the configured EELF provider)normally com.att.eelf.configuration.SLF4jWrapper
logs via SLF4J, and SLF4J will receive any MDC that is set:

http://www.masterzen.fr/2013/01/13/the-10-commandments-of-logging/
https://www.loggly.com/blog/how-to-write-effective-logs-for-remote-logging/
https://logback.qos.ch/manual/mdc.html

import java.util.UUID;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.slf4j.MDC;
import com.att.eelf.configuration.EELFLogger;
import com.att.eelf.configuration.EELFManager;
// ...
final EELFLogger logger = EELFManager.getInstance().getLogger(this.getClass());
MDC.put("SomeUUID", UUID.randomUUID().toString());
try {
 logger.info("This message will have a UUID-valued 'SomeUUID' MDC attached.");
 // ...
}
finally {
 MDC.clear();
}

Serializing

Output of MDCs must ensure that:

All reported MDCs are logged with both name AND value. Logging output should not treat any MDCs as special.
All MDC names and values are escaped.

Escaping in Logback configuration can be achieved with:

%replace(%replace(%mdc){'\t','\\\\t'}){'\n','\\\\n'}

MDC - RequestID

This is often referred to by other names, including "Transaction ID", and one of several (pre-standardization) REST header names including X-ECOMP-
 and .RequestID X-ONAP-RequestID

ONAP logging uses a universally unique " value in log records to track the processing of each client request across all the ONAP components RequestID"
involved in its processing.

This value:

Is logged as a MDC. RequestID
Is propagated between components in REST calls as an HTTP header.X-TransactionID

Receiving the will vary by component according to APIs and frameworks. In general:X-TransactionID

import javax.ws.rs.core.HttpHeaders;
// ...
final HttpHeaders headers = ...;
// ...
String txId = headers.getRequestHeaders().getFirst("X-TransactionID");
if (StringUtils.isBlank(txId)) {
 txId = UUID.randomUUID().toString();
}
MDC.put("RequestID", txID);

Setting the likewise will vary. For example:X-TransactionID

final String txID = MDC.get("RequestID");
HttpURLConnection cx = ...;
// ...
cx.setRequestProperty("X-TransactionID", txID);

MDC - InvocationID

InvocationID is similar to , but where correlates records relating a single, top-level invocation of ONAP as it traverses many RequestID RequestID
systems, correlates log entries relating to a single invocation of a single component. Typically this means via REST, but in certain cases an InvocationID I

 may be allocated without a new invocation, e.g. when a request is retried.nvocationID

RequestID and allow an execution graph to be derived. This requires that: InvocationID

The relationship between and is reported. RequestID InvocationID
The relationship between caller and recipient is reported for each invocation.

The proposed approach is that:

Callers:
Issue a new, unique UUID for each downstream call they make. InvocationID
Log the new , indicating the intent to invoke:InvocationID

With Markers , and if the invocation is synchronous.INVOKE SYNCHRONOUS
With their own still set as an MDC.InvocationID

Pass the as an REST header.InvocationID X-InvocationID
Invoked components:

Retrieve the from REST headers upon invocation, or generate a UUID default. InvocationID
Set the MDC.InvocationID
Write a log entry with the Marker . (In EELF this will be to the AUDIT log).ENTRY
Act as per Callers in all downstream requests.
Write a log entry with the Marker upon return. (In EELF this will be to the METRIC log).EXIT
Unset all MDCs on exit.

That seems onerous, but:

It's only a few calls.
It can be largely abstracted in the case of EELF logging.

TODO: code.

MDC - PartnerName

This field should contain the name of the client application user agent or user invoking the API.

This is often used for heuristic analysis to identify invocations between ONAP individual ONAP components. Its value has never been clearly stipulated, so
a common problem has been a lack of consistency.

There is no clear consensus, but:

Use the short name of your component, e.g. . xyzdriver
Values should be human-readable.
Values should be fine-grained enough to disambiguate subcomponents where it's likely to matter. This is subjective.
Be consistent: your component should ALWAYS report same value.

Real-life examples include , , , (all of which are reported by SO), (SDNC), (VID!) etc. (See the problem?)MSO bpmnclient BPELClient openECOMP vid

Usage overlaps with , which doesn't mean gets retired, but which might mean it serves a more descriptive purpose. (Since it InvocationID PartnerName
hasn't proven to be a great way of generating a call graph).

MDC - ServiceName

For EELF Audit log records that capture API requests, this field contains the name of the API invoked at the component creating the record (e.g., Layer3Se
).rviceActivateRequest

For EELF Audit log records that capture processing as a result of receipt of a message, this field should contain the name of the module that processes
the message.

Usage is the same for indexable logs.

MDCs - the Rest

Other MDCs are logged in a wide range of contexts.

Certain MDCs and their semantics may be specific to EELF log types.

TODO: cross-reference EELF output to v1 doc.

ID MDC Description Required EELF
Audit

EELF
Metric

EELF
Error

EELF
Debug

Request
ID

See above. Y

Invocati
onID

See above. Y

Service
Name

See above. Y

Partner
Name

See above. Y

1 BeginTi
mestamp

Date-time that processing activities being logged begins. The value should be represented in UTC and
formatted per ISO 8601, such as “2015-06-03T13:21:58+00:00”. The time should be shown with the
maximum resolution available to the logging component (e.g., milliseconds, microseconds) by including
the appropriate number of decimal digits. For example, when millisecond precision is available, the date-
time value would be presented as, as “2015-06-03T13:21:58.340+00:00”.

Y

2 EndTim
estamp

Date-time that processing for the request or event being logged ends. Formatting rules are the same as
for the BeginTimestamp field above.

In the case of a request that merely logs an event and has not subsequent processing, the EndTimestamp
value may equal the BeginTimestamp value.

Y

3 Elapsed
Time

This field contains the elapsed time to complete processing of an API call or transaction request (e.g.,
processing of a message that was received). This value should be the difference between. EndTimestamp
and BeginTimestamp fields and must be expressed in milliseconds.

Y

4 ServiceI
nstanceID

This field is optional and should only be included if the information is readily available to the logging
component.

Transaction requests that create or operate on a particular instance of a service/resource can
identify/reference it via a unique “serviceInstanceID” value. This value can be used as a primary key for
obtaining or updating additional detailed data about that specific service instance from the inventory
(e.g., AAI). In other words:

In the case of processing/logging a transaction request for creating a new service instance, the
serviceInstanceID value is determined by either a) the MSO client and passed to MSO or b) by
MSO itself upon receipt of a such a request.
In other cases, the serviceInstanceID value can be used to reference a specific instance of a
service as would happen in a “MACD”-type request.

ServiceInstanceID is associated with a requestID in log records to facilitate tracing its processing
over multiple requests and for a specific service instance. Its value may be left “empty” in
subsequent record to the 1 st record where a requestID value is associated with the
serviceInstanceID value.

NOTE: AAI won’t have a serviceInstanceUUID for every service instance. For example, no
serviceInstanceUUID is available when the request is coming from an application that may import
inventory data.

5 VirtualS
erverNa
me

Physical/virtual server name. Optional: empty if determined that its value can be added by the agent that
collects the log files collecting.

6 StatusC
ode

This field indicates the high level status of the request. It must have the value COMPLETE when the
request is successful and ERROR when there is a failure.

Y

7 Respons
eCode

This field contains application-specific error codes. For consistency, common error categorizations should
be used.

8 Respons
eDescrip
tion

This field contains a human readable description of the .ResponseCode 11

9 Instance
UUID

If known, this field contains a universally unique identifier used to differentiate between multiple instances
of the same (named) log writing service/application. Its value is set at instance creation time (and read by
it, e.g., at start/initialization time from the environment). This value should be picked up by the component
instance from its configuration file and subsequently used to enable differentiation of log records created
by multiple, locally load balanced ONAP component or subcomponent instances that are otherwise
identically configured.

10 Severity Optional: 0, 1, 2, 3 see monitoring/alerting for specifics/details.Nagios

11 TargetE
ntity

It contains the name of the ONAP component or sub-component, or external entity, at which the operation
activities captured in this metrics log record is invoked.

Y

12 TargetS
erviceNa
me

It contains the name of the API or operation activities invoked at the TargetEntity. Y

13 Server This field contains the Virtual Machine (VM) Fully Qualified Domain Name (FQDN) if the server is
virtualized. Otherwise, it contains the host name of the logging component.

Y

14 ServerIP
Address

This field contains the logging component host server’s IP address if known (e.g. Jetty container’s
listening IP address). Otherwise it is empty.

15 ServerF
QDN

Unclear, but possibly duplicating one or both of and .Server ServerIPAddress

16 ClientIP
Address

This field contains the requesting remote client application’s IP address if known. Otherwise this field can
be empty.

17 Process
Key

This field can be used to capture the flow of a transaction through the system by indicating the
components and operations involved in processing. If present, it can be denoted by a comma separated
list of components and applications.

18 Remote
Host

Unknown.

19 AlertSev
erity

Unknown.

20 TargetVi
rtualEntity

Unknown

21 ClassNa
me

Defunct. Doesn't require an MDC.

22 ThreadID Defunct. Doesn't require an MDC.

23 Custom
Field1

(Defunct now that MDCs are serialized as NVPs.)

https://en.wikipedia.org/wiki/Nagios

1.
2.

24 Custom
Field2

(Defunct now that MDCs are serialized as NVPs.)

25 Custom
Field3

(Defunct now that MDCs are serialized as NVPs.)

26 Custom
Field4

(Defunct now that MDCs are serialized as NVPs.)

Examples

SDC-BE

20170907: audit.log

root@ip-172-31-93-160:/dockerdata-nfs/onap/sdc/logs/SDC/SDC-BE# tail -f audit.log
2017-09-07T18:04:03.679Z|||||qtp1013423070-72297||ASDC|SDC-BE|||||||N/A|INFO||||10.42.88.30||o.o.s.v.r.s.
VendorLicenseModelsImpl||ActivityType=<audit>, Desc=< --Audit-- Create VLM. VLM Name: lm4>

TODO: this is the earlier output format. Let's find an example which matches the latest line format.

Markers

Markers differ from MDCs in two important ways:

They have a name, but no value. They are a tag.
Their scope is limited to logger calls which specifically reference them; they are not . ThreadLocal

Logging

Via SLF4J:

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.slf4j.Marker;
import org.slf4j.MarkerFactory;
// ...
final Logger logger = LoggerFactory.getLogger(this.getClass());
final Marker marker = MarkerFactory.getMarker("MY_MARKER");
logger.warn(marker, "This warning has a 'MY_MARKER' annotation.");

EELF does not allow Markers to be set directly. See notes on the MDC.InvocationID

Serializing

Marker names also need to be escaped, though they're much less likely to contain problematic characters than MDC values.

Escaping in Logback configuration can be achieved with:

%replace(%replace(%marker){'\t','\\\\t'}){'\n','\\\\n'}

Marker - ENTRY

This should be reported as early in invocation as possible, immediately after setting the and MDCs.RequestID InvocationID

It can be automatically set by EELF, and written to the AUDIT log.

It must be manually set otherwise.

EELF:

EELF

final EELFLogger logger = EELFManager.getAuditLogger();
logger.auditEvent("Entering.");

https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadLocal.html

SLF4J:

SLF4J

public static final Marker ENTRY = MarkerFactory.getMarker("ENTRY");
// ...
final Logger logger = LoggerFactory.getLogger(this.getClass());
logger.debug(ENTRY, "Entering.");

Marker - EXIT

This should be reported as late in invocation as possible, immediately before unsetting the and MDCs.RequestID InvocationID

It can be automatically reported by EELF, and written to the METRIC log.

It must be manually set otherwise.

EELF:

EELF

final EELFLogger logger = EELFManager.getMetricsLogger();
logger.metricsEvent("Exiting.");

SLF4J:

SLF4J

public static final Marker EXIT = MarkerFactory.getMarker("EXIT");
// ...
final Logger logger = LoggerFactory.getLogger(this.getClass());
logger.debug(EXIT, "Exiting.");

Marker - INVOKE

This should be reported by the caller of another ONAP component via REST, including a newly allocated , which will be passed to the caller. InvocationID

SLF4J:

SLF4J

public static final Marker INVOKE = MarkerFactory.getMarker("INVOKE");
// ...

// Generate and report invocation ID.

final String invocationID = UUID.randomUUID().toString();
MDC.put(MDC_INVOCATION_ID, invocationID);
try {
 logger.debug(INVOKE_SYNCHRONOUS, "Invoking synchronously ... ");
}
finally {
 MDC.remove(MDC_INVOCATION_ID);
}

// Pass invocationID as HTTP X-InvocationID header.

callDownstreamSystem(invocationID, ...);

TODO: EELF examples of INVOCATION_ID reporting, without changing published APIs.

Marker - SYNCHRONOUS

1.
2.

1.
2.
3.

This should accompany when the invocation is synchronous.INVOKE

SLF4J:

SLF4J

public static final Marker INVOKE_SYNCHRONOUS;
static {
 INVOKE_SYNCHRONOUS = MarkerFactory.getMarker("INVOKE");
 INVOKE_SYNCHRONOUS.add(MarkerFactory.getMarker("SYNCHRONOUS"));
}
// ...

// Generate and report invocation ID.

final String invocationID = UUID.randomUUID().toString();
MDC.put(MDC_INVOCATION_ID, invocationID);
try {
 logger.debug(INVOKE_SYNCHRONOUS, "Invoking synchronously ... ");
}
finally {
 MDC.remove(MDC_INVOCATION_ID);
}

// Pass invocationID as HTTP X-InvocationID header.

callDownstreamSystem(invocationID, ...);

TODO: EELF example of SYNCHRONOUS reporting, without changing published APIs.

Errorcodes

Errorcodes are reported as MDCs.

Exceptions should be accompanied by an errrorcode. Typically this is achieved by incorporating errorcodes into your exception hierarchy and error
handling. ONAP components generally do not share this kind of code, though EELF defines a marker interface (meaning it has no methods) EELFResolva

.bleErrorEnum

A common convention is for errorcodes to have two components:

A , which identifies the origin of the error. prefix
A , which identifies the kind of error.suffix

Suffixes may be numeric or text. They may also be common to more than one component.

For example:

COMPONENT_X.STORAGE_ERROR

Output Format

Several considerations:

Logs should be human-readable (within reason).
Shipper and indexing performance and durability depends on logs that can be parsed quickly and reliably.
Consistency means fewer shipping and indexing rules are required.

Text Output

ONAP needs to strike a balance between human-readable and machine-readable logs. This means:

The use of PIPE (|) as a delimiter. (Previously tab, and before that ... pipe).
Escaping all messages, exceptions, MDC values, Markers, etc. to replace tabs and pipes in their content.
Escaping all newlines with so that each entry is on . \n one line

In logback, this looks like:

<property name="defaultPattern" value="%nopexception%logger
|%date{yyyy-MM-dd'T'HH:mm:ss.SSSXXX,UTC}
|%level
|%replace(%replace(%replace(%message){'\t','\\\\t'}){'\n','\\\\n'}){'|','\\\\|'}
|%replace(%replace(%replace(%mdc){'\t','\\\\t'}){'\n','\\\\n'}){'|','\\\\|'}
|%replace(%replace(%replace(%rootException){'\t','\\\\t'}){'\n','\\\\n'}){'|','\\\\|'}
|%replace(%replace(%replace(%marker){'\t','\\\\t'}){'\n','\\\\n'}){'|','\\\\|'}
|%thread
|%n"/>

The output of which, with MDCs, a Marker and a nested exception, , looks like:with newlines added for readability

org.onap.example.component1.subcomponent1.LogbackTest
|2017-08-06T16:09:03.594Z
|ERROR
|Here's an error, that's usually bad
|key1=value1, key2=value2 with space, key5=value5"with"quotes, key3=value3\nwith\nnewlines,
key4=value4\twith\ttabs
|java.lang.RuntimeException: Here's Johnny
\n\tat org.onap.example.component1.subcomponent1.LogbackTest.main(LogbackTest.java:24)
\nWrapped by: java.lang.RuntimeException: Little pigs, little pigs, let me come in
\n\tat org.onap.example.component1.subcomponent1.LogbackTest.main(LogbackTest.java:27)
|AMarker1
|main

Default Logstash indexing rules understand output in this format.

XML Output

For Log4j 1.X output, since escaping is not supported, the best alternative is to emit logs in XML format.

There may be other instances where XML (or JSON) output may be desirable. Default indexing rules support

Default Logstash indexing rules understand the XML output of .Log4J's XMLLayout

Note that we're hoping that support for indexing of XML output can be deprecated during Beijing. This relies on the adoption of ODL Carbon, which should
eliminate any remnant of Log4J1.X.

Output Location

Standardization of output locations makes logs easier to locate and ship for indexing.

Logfiles should default to beneath , and beneath in the case of core ONAP components:/var/log /var/log/ONAP

/var/log/ONAP/<component>[/<subcomponent>]/*.log

For the duration of Beijing, logs will be written to a separate directory, :/var/log/ONAP_EELF

/var/log/ONAP_EELF/<component>[/<subcomponent>]/*.log

Configuration

Logging providers should be configured by file. Files should be at a predictable, static location, so that they can be written by deployment automation.
Ideally this should be under , but compliance is low./etc/ONAP

Locations

All logger provider configuration document locations namespaced by component and (if applicable) subcomponent by default:

/etc/ONAP/<component>[/<subcomponent>]/<provider>.xml

Where , will typically be one of:<provider>.xml

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/xml/XMLLayout.html

1.
2.
3.

1.
2.
3.

1.
2.
3.
4.

logback.xml
log4j.xml
log4j.properties

Reconfiguration

Logger providers should reconfigure themselves automatically when their configuration file is rewritten. All major providers should support this.

The default interval is 10s.

Overrides

The location of the configuration file MAY be overrideable, for example by an environment variable, but this is left for individual components to decide.

Archetypes

Configuration archetypes can be found in the ONAP codebase. Choose according to your provider, and whether you're logging via EELF. Efforts to
standardize them are underway, so the ones you should be looking for are where pipe (|) is used as a separator. (Previously it was "|").

Retention

Logfiles are often large. Logging providers allow retention policies to be configured.

Retention has to balance:

The need to index logs before they're removed.
The need to retain logs for other (including regulatory) purposes.

Defaults are subject to change. Currently they are:

Files <= 50MB before rollover.
Files retain for 30 days.
Total files capped at 10GB.

In Logback configuration XML:

<appender name="file" class="ch.qos.logback.core.rolling.RollingFileAppender">
 <file>${outputDirectory}/${outputFilename}.log</file>
 <rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
 <fileNamePattern>${outputDirectory}/${outputFilename}.%d{yyyy-MM-dd}.%i.log.zip</fileNamePattern>
 <maxFileSize>50MB</maxFileSize>
 <maxHistory>30</maxHistory>
 <totalSizeCap>10GB</totalSizeCap>
 </rollingPolicy>
 <encoder>
 <!-- ... -->
 </encoder>
</appender>

Types of EELF Logs
EELF guidelines stipulate that an application should output log records to four separate files:

audit
metric
error
debug

This applies only to EELF logging. Components which log directly to a provider may choose to emit the same set of logs, but most do not.

Audit Log

An audit log is required for EELF-enabled components, and provides a summary view of the processing of a (e.g., transaction) request within an
application. It captures activity requests that are received by an ONAP component, and includes such information as the time the activity is initiated, then it
finishes, and the API that is invoked at the component.

Audit log records are intended to capture the high level view of activity within an ONAP component. Specifically, an API request handled by an ONAP
component is reflected in a single Audit log record that captures the time the request was received, the time that processing was completed, as well as
other information about the API request (e.g., API name, on whose behalf it was invoked, etc).

1.
2.

1.
2.
3.
4.
5.

a.
b.

i.
ii.
iii.

6.

1.
2.

a.
b.
c.

3.
4.

5.
6.
7.

8.

Metrics Log

A metrics log is required for EELF-enabled components, and provides a more detailed view into the processing of a transaction within an application. It
captures the beginning and ending of activities needed to complete it. These can include calls to or interactions with other ONAP or non-ONAP entities.

Suboperations invoked as part of the processing of the API request are logged in the Metrics log. For example, when a call is made to another ONAP
component or external (i.e., non-ONAP) entity, a Metrics log record captures that call. In such a case, the Metrics log record indicates (among other things)
the time the call is made, when it returns, the entity that is called, and the API invoked on that entity. The Metrics log record contain the same RequestID
as the Audit log record so the two can be correlated.

Note that a single request may result in multiple Audit log records at an ONAP component and may result in multiple Metrics log records generated by the
component when multiple suboperations are required to satisfy the API request captured in the Audit log record.

Error Log

An error log is required for EELF-enabled components, and is intended to capture info, warn, error and fatal conditions sensed (“exception handled”) by
the software components.

Debug Log

A debug log is optional for EELF-enabled components, and is intended to capture whatever data may be needed to debug and correct abnormal conditions
of the application.

Engine.out

Console logging may also be present, and is intended to capture “system/infrastructure” records. That is stdout and stderr assigned to a single “engine.out”
file in a directory configurable (e.g. as an environment/shell variable) by operations personnel.

New ONAP Component Checklist
By following a few simple rules:

Your component's output will be indexed automatically.
Analytics will be able to trace invocation through your component.

Obligations fall into two categories:

Conventions regarding configuration, line format and output.
Ensuring the propagation of contextual information.

You must:

Choose a Logging provider and/or EELF. Decisions, decisions.
Create a configuration file based on an existing archetype. See .Configuration
Read your configuration file when your components initialize logging.
Write logs to a standard location so that they can be shipped by Filebeat for indexing. See .Output Location
Report transaction state:

Retrieve, default and propagate . See .RequestID MDC - RequestID
At each invocation of one ONAP component by another:

Initialize and propagate . See .InvocationID MDC - Invocation ID
Report and markers in caller. INVOKE SYNCHRONOUS
Report and markers in recipient. ENTRY EXIT

Write useful logs!

 They are unordered.

What's New
(Including what be new in v1.2 / R2). WILL

Field separator reverted to pipe.
Dual appenders in Logback and Log4j reference configurations:

Indexable, for shipping and indexing.
EELF, for backward compatibility.
Minor changes to path conventions.

XML output deprecated (required only for Log4j1.2, which is also expected to go).
Improved documentation of semantics and usage (including initialization and propagation via ThreadLocal and HTTP headers) for existing MDCs
and attributes.
Add MDCs/Markers + usage for invocation IDs, allowing call graphs to be built without reliance on heuristics.
Revisiting persistence (a clear requirement) and rollover settings, based on feedback from operations.
More discussion of How to Log. (Where previously guidelines were largely concerned with architecture and mechanics).

8. Locking in other changes proposed in R1, including MDC serialization, escaping, etc. These can be treated as accepted. (Note that they only
affect indexable output).

In addition, we expect to provide (as a Beijing deliverable) a minimal, synthetic component as an example of best-practices, and this will provide all code
examples for this guide. (Does that mean the example will log via EELF, or will we end up with two variants?)

	ONAP Application Logging Guidelines v1.2 (Beijing)

