
Optimization Service Design Framework

Contents

Summary
Rationale and Motivation

Traditional Optimization
Declarative, Policy- and Model-Driven Architecture for Optimization Applications

Features and Utility of OOF
Contributors
Functional Architecture

Technology Choices
Components of the Core Framework

Data Adapter Library
Translation Modules
Modeling Support
Execution Environment

Simple Example: Budget Constrained Maximum Network Flow Problem
Problem Description
Minizinc Model
Minizinc Data Template
Minizinc Data File

Initial, Representative Applications
Homing and Allocation Service (HAS)
Change Management Scheduling Optimization (CMSO)

Other Major ONAP-OOF Use Cases
OOF and ONAP Multicloud (ONAP-MC) for 5G-RAN
Higher Order Control Loop: VNF and Service scaling across multiple cloud instances

Release Planning
Improvement of OOF by ingesting advances from open source efforts and new code

Deployment Process
Linkages to different components and API's
Unit Tests and Code Coverage
Containerization and Deployment
Integration Tests

Links to Relevant Resources
Optimization and Minizinc Related Resources
Links to major ONAP components
Important Links
Resources related to open issues

Feature Roadmap/Wishlist
Ingestion of new advances from open source optimization efforts

Summary
The OOF plans to provide optimization capability as a service for ONAP R2 and beyond. OOF uses a typical optimization construct:

Objective: Maximize/minimize a metric, measured by appropriate key performance indicators (KPIs)
Technology and operating constraints, such as:

Parameter change limits (such as power)
Frequency of changes permitted
Number of parameters that can be changed simultaneously
Data latencies (typically in percentile)
DC compute, network, storage, energy capacity
Location based and time based energy cost

The objective metrics could be throughput (maximize), interference levels (minimize), accessibility/retainability (maximize), cost (minimize) etc. KPIs could
be infrastructure utilization statistics provided by ONAP-MC.

The OOF is developed based on the following core ideas:

Gliffy Macro Error

An error occurred while rendering this diagram. Please contact your administrator.

Name: Placement-via-HAS Copy Copy

1.
2.
3.
4.

a.
b.
c.

5.

Most optimization problems can be solved in a declarative manner using a high-level modeling language.
Recent advances in open source optimization platforms allow the solution process to be mostly solver-independent.
By leveraging the library of standard/global constraints, optimization models can be rapidly developed.
By developing a focused set of platform components, we can realize a policy-driven, declarative system that allows ONAP optimization
applications be composed rapidly and managed easily

Policy and data adapters
Execution and management environment
Curated "knowledge base" and recipes to provide information on typical optimization examples and how to use the OOF

More importantly, by providing a way to support both "traditional" optimization applications and model-driven applications, we can provide a
choice for users to adapt the platform based on their business needs and skills/expertise.

The OOF aims to realize these via a set of initial applications for ONAP use cases that are being developed collaboratively across a broad team.

Rationale and Motivation

Traditional Optimization

Traditionally, optimization applications are tailor-made for specific requirements, and the process for developing an optimization application often involves
substantial application-specific "custom code". Any changes in the problem (e.g. new optimization constraints, objectives, or data sources) requires
development effort involving code changes in various components of the application. These changes can span aspects such as (a) Optimization Model
Specification, (b) Request Handler, (c) Adapters for data and parameters, (d) Application Configuration, (e) Code in custom solver, etc., and involve long
development cycles even for simple changes in requirements.

Declarative, Policy- and Model-Driven Architecture for Optimization Applications

The goal of the Optimization Framework is to drastically reduce the amount of such code changes by providing platform-level functionality.

1.

2.

3.

4.

1.
a.

b.

2.
a.

3.
a.

4.
a.

b.

Features and Utility of OOF
The main features of the ONAP Optimization Framework (OOF) are:

It provides a robust, scalable optimization framework for rapidly developing new optimization applications independent of how the underlying
optimization modules are implemented.
It enables reusability of optimization engines, addresses problems arising due to different applications using custom optimization codes, adapter
libraries, and configuration logic. This is achieved via a policy-driven configuration system, and a library of generalized optimizers that can be
configured via policies.
OOF-based solutions can be quickly on-boarded onto ONAP, linked to various data collectors, databases, and microservices in ONAP/DCAE,
and can dynamically be scaled at run-time.
Overall, the OOF eliminates software redundancy and inconsistencies arising from variations in quality and configurability of different optimizers.
The unified approach of OOF reduces the overhead associated with managing different optimization applications.

Advantages of the Unified Approach of OOF

OOF is policy driven.
OOF provides mechanisms to specify optimization constraints as policies that are configurable by service designers or operators. In
contrast, legacy optimization applications include such information inside configuration files and sometimes in the code.
Constraints and other policies are available for multiple uses, which encourages reusability. This reduces inconsistencies in constraints
or policies across services, and helps reduce duplication of effort for common tasks.

OOF provides reusable, model-driven adapters for data sources and external systems
Data formats and API calls are model-driven in OOF, so likely errors are identified very early in the request-response sequence. OOF
provides adapters to different data sources (DCAE as well as external systems), which can be directly reused.

OOF is agnostic towards service, application, and optimization engine technology/language
Optimizers that can be chained together in a technology and programming-language agnostic manner (e.g. general purpose
mathematical solvers such as GLPK and CPLEX can co-exist with custom-implementations of algorithms). New optimization solutions
can be composed by chaining existing optimizers (e.g. by linking placement, networking, and licensing optimizations).

OOF provides a dynamically scalable, fault-tolerant environment with resource pooling
Runtime environment is based on ONAP/DCAE's Hadoop/Yarn technologies (and can be easily adapted to other cluster technologies
such as kubernetes).
OOF uses a queue-based system with independent ``workers'' processing optimization tasks. These workers can be dynamically scaled
and jobs are picked up by the next available worker if a worker container fails.

Contributors
Overall Architecture/Design: AT&T, VMWare, Intel

Core OOF Components (Adapters, architecture, seed code): AT&T

Underlying optimization platform: Code developed by University of Melbourne and Monash University

Packaging and verification of OOF System: VMWare, NetCracker, AT&T

Policies and interpretation: Intel, AT&T

Homing and Allocation Service: AT&T, Intel

CI/CD and Test Coverage: NetCracker, AT&T

Modification of Adapters: Huawei, AT&T, VMWare

Functional Architecture

Technology Choices

Minizinc provides an open source constraint modeling language/platform for specifying optimization applications. It contains direct interfaces to COIN-OR
, and . Additionally, support minizinc via FlatZinc interfaces. The provideCBC Gurobi IBM ILOG CPLEX many optimization projects Minizinc standard library

s a subset of constraints form the as a high-level abstraction that have efficient algorithms implemented by several solvers. global constraint catalogue

Components of the Core Framework

An overview of the components of the core optimization framework. The OOF utilizes the open source project Minizinc, which has a solver-independent
modeling language and has interfaces to various open source and commercial solvers. One of the additional benefits of this approach is that by developing
a focused set of ONAP-related components, we can utilize ongoing advances in optimization technologies, as well as adapt other currently available
extensions to Minizinc and related projects. The OOF project aims to build these components with a focus on minimal viable product for Beijing Release in
order to support initial applications and use cases, with subsequent focus on expanding the platform.

Data Adapter Library

The OOF will provide a library of adapters for common ONAP systems. These can be directly used in data specification templates of the applications. In
the initial release, these will include adapters to Policy, A&AI, Multi-Cloud, and SDC (additional "stretch goals" for this release include SDN-C, Microservice
Bus). As new use cases are implemented, this library will be augmented by new adapters to other services.

Translation Modules

The OOF will provide modules for translating policies into constraints for the optimization environment. When an underlying minizinc model is used for
optimization, it is translated into a minizinc constraint (either via a data specification template or directly from policy). For custom optimizers, these
constraints will be translated to the input format expected by the optimizer via the data specification template. The Homing and Allocation Service (HAS;
described in the next section) uses a custom optimization module and hence uses the data specification template approach.

Modeling Support

The OOF provides simple templating system through which users can specify links to different ONAP components, including policy, A&AI, SDC, etc.

Execution Environment

The OOF execution environment contains the minizinc system, along with data/template rendering system that leverages the adapters to various systems.
The flow of execution can be configured via the configuration file for the application and supports a choice of specific solver or invocations to custom
/external solvers.

Simple Example: Budget Constrained Maximum Network Flow Problem

http://www.minizinc.org/
https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Cbc
#
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.minizinc.org/software.html
http://www.minizinc.org/doc-lib/doc-globals.html
http://sofdem.github.io/gccat/gccat/content.html

1.
2.
3.
4.

1.

2.

3.

4.

Problem Description

Illustration of the budget-constrained max-flow problem. Given a set of starting nodes and destination nodes, the objective is to calculate the maximum
amount of "flow" across the nodes, subject to capacity constraints of nodes, constraints on the capacity of the connections (edges), as well as costs
associated with utilization of each connection (edge). The objective is to maximize the flow subject to the budget constraint.

This model can be composed from different components, each developed by contrbutors with different expertise and roles. The development can happen
at different times (initial problem definition, service design time, run-time, and continuous improvement stages). Contributors can have different roles and
expertise. Examples include:

An optimization modeler (with expertise on modeling and mathematical aspects of optimization)
A software developer with knowledge of data modeling and model/data templates
A developer with expertise in creating policy models in the context of specific business domains
An Ops team member with knowledge of applicable policies for a set of services and applications and knowledge on run-time configuration

An optimization model can therefore evolve from a mathematical concept to a computer program to a policy-driven, dynamically re-configurable application
through the following stages:

An optimization modeler identifies the key concepts, comes up with a mathematical model, creates an optimization model, and tests with a small
example dataset (a prototype corresponding to the model shown in the problem description above.
Then, a developer with an understanding of the API requirements, basic understanding of the model and data sources/adapters links the model to
a data template (template file shown below). The developer needs a basic understanding of key variables of a model such as nodes, bandwidths,
capacities in this example. While most adapters will be available from OSDF library, additional adapters/libraries can be developed and can be
contributed back to the ODSF library.
A service designer, with basic understanding of key model concepts (key variables of a model such as nodes, bandwidths, capacities in this
example) can create policy models (or use/extend existing constraint policy models from the OSDF library). In this example, this introduces a new
constraint reflecting the maximum amount of flow that can go through a single network link, in order to reduce service disruption risks.
On top of this, an Ops person can enable or configure an applicable run-time operational constraint policy. In this example, this introduces a more
stringent budget constraint (from all allowed budget to only 80% of the budget).

Thus, a new service can be created by extending existing optimization models, policies, and adapters, and using them as building blocks/ingredients.

Minizinc Model

MiniZinc model for the example application (budget constrained network flow optimization model). This model can be composed from

different components, each independently contributed by contrbutors with different expertise and roles, as described above.

int: N; % input nodes

int: M; % output nodes

int: maxbw; % max bandwidth (for convenience)

float: budget;

 : inNodes 1 N;set of int = ..
 : outNodes 1 M;set of int = ..

[inNodes] : inCap; array of int % capacities for input nodes

array[outNodes] : outCap; of int % capacity for output nodes
[inNodes, outNodes] : bw; array of int % max bandwidth of link

array[inNodes, outNodes] : cost; of float % unit cost for the link

array[inNodes, outNodes] 0 maxbw: x; of var .. % amount through this link

constraint (i inNodes) ((j outNodes) (x[i,j]) inCap[i]);forall in sum in <=
 (j outNodes) ((i inNodes) (x[i,j]) outCap[j]);constraint forall in sum in <=
 (i inNodes, j outNodes) (x[i,j] bw[i,j]);constraint forall in in <=

 (i inNodes, j outNodes) (x[i,j] cost[i,j]) budget;constraint sum in in * <=

% another "stringent" service-specific policy

constraint (i inNodes, j outNodes) (x[i,j] cost[i,j]) 0.8 budget;sum in in * <= *

% each link cannot have more than 20% of traffic from a customer

var flow (i inNodes, j outNodes) (x[i,j]);= sum in in
 (i inNodes, j outNodes) (x[i,j] 0.2 flow);constraint forall in in <= *

 (i inNodes, j outNodes) (x[i,j]);solve maximize sum in in

Minizinc Data Template

% Example of a constraint policy pushed by an Ops person at run-time (by "enabling" and/or configuring a policy)
% The OOF will inject the translated policy into the MiniZinc model for subsequent requests to this service

% Example of a constraint policy specified and/or pushed by a service designer at design time
% The OOF will inject the translated policy into the MiniZinc model for all requests to this service

Data file used in the for the example application. The file format is dzn (Minizinc data format) and the file uses the widely used jinja2

templating for Python, with support for OOF to objects such as "input" (the input API request), SDC (a dummy object that provides

information on cost per unit network utilization for each network edge), and AAI (another dummy object that provides network capacities of

nodes, and also bandwith for links among different nodes). This data template is rendered into a data file (dzn format), which, together with

the model file defines a complete optimization problem.

% Relevant calls to APIs
 inNodes, outNodes, budget = input.get(, ,) {% "inNodes" "outNodes" "budget" %}
 inCap, outCap = AAI.getCapacities(inNodes, outNodes) ;{% %}
 bw = AAI.getBandwidthMatrix(inNodes, outNodes) ;{% %}
 cost = SDC.getNetworkCostMatrix(inNodes, outNodes) ;{% %}

N = ;{{ len(inNodes) }}
M = ;{{ len(outNodes) }}
maxbw = ;{{ max(max(bw)) }}
budget = ;{{ budget }}

inCap = ;{{ inCap }}
outCap = ;{{ outCap }}

bw = ; writes it out minizinc matrix{{ mzn.toMatrix(bw) }} % as
cost = ;{{ mzn.toMatrix(cost) }}

Minizinc Data File

Rendered Minizinc Data File (from Template)

N 5;=
M 4;=
maxbw 20;=
budget 50;=

inCap [10, 5, 0, 4, 20];=

outCap [10, 0, 5, 4];=

bw [| 10, 5, 0, 0=
 | 2, 4, 10, 0
 | 4, 4, 10, 0
 | 2, 0, 0, 5
 | 0, 0, 0, 1 |];

cost [| 1, 1, 10, 20=
 | 90, 90, 90, 90
 | 2, 1, 1, 1
 | 2, 10, 10, 1
 | 9, 9, 9, 99.9 |];

Initial, Representative Applications

Homing and Allocation Service (HAS)

OF-HAS is a policy-driven placement optimizing service (or homing service) that allows ONAP to deploy services automatically across multiple sites and
multiple clouds. It enables placement based on a wide variety of policy constraints including capacity, location, platform capabilities, and other service
specific constraints. Given a set of service components (based on SO decomposition flows) and requirements for placing these components (driven by
policies), HAS finds optimal resources (cloud regions or existing service instances) to home these service components such that it meets all the service
requirements. HAS is architected as an extensible homing service that can accommodate a growing set of homing objectives, policy constraints, data
sources and placement algorithms. More details on HAS flow and architecture can be found in the HAS Project Page.

https://wiki.onap.org/pages/viewpage.action?pageId=16005528

The HAS application highlights how a custom optimization application can utilize the OOF. In this specific case, the HAS application provides on its own:
(a) an execution environment, (b) an API specification, (c) adapters to data components such as A&AI and SO, (d) and a custom optimization algorithm
/solver. The HAS application relies on OOF for policy retrieval and translation.

Sequence of steps involved in a placement request and solution process. In this particular case, the HAS application fetches the data from A&AI and
applies constraints to identify the solution set.

Change Management Scheduling Optimization (CMSO)

This use case is meant to provide a basic skeleton for describing an example change management scheduling optimization problem. Typical CMSO
applications involve a large range of constraints for describing the time constraints as well as complex inter-dependencies across different tasks and
entities involved in the change management process. For this initial use case, we provide a small set of simple constraints via a simple but non-trivial
application as a means to show how the OOF can be leveraged. As the broader CMSO use case evolves, we anticipate to make the application more
representative.

Other Major ONAP-OOF Use Cases

1.
2.

a.
b.

1.

2.

In addition to Homing and Allocation Service (HAS) and Change Management Scheduling Optimization (CMSO), ongoing efforts focus on the following use
cases:

OOF and ONAP Multicloud (ONAP-MC) for 5G-RAN

ONAP-MC currently provides infrastructure statistics and infrastructure fault notification/remediation as services. For ONAP R1, the MC service
encompass detailed infrastructure utilization statistics across various subsystems compute, network, storage and energy. For ONAP R2 and beyond, this
service plans to provide aggregate infrastructure utilization statistics at a multi-cloud instance level, clusters within a multi-cloud instance level etc.

In the context of 5G, OOF and ONAP-MC working together with other ONAP components can address several challenges such as

Optimized SON dynamic spectrum allocation
White space and unlicensed spectrum use
Optimized VNF placement across distributed DCs for network slicing
Slice optimization
Macro and micro cell interplays
Energy optimization
Zero touch new carrier integration

Additional details of this use case are available at the Project Page for 5G-RAN Deployment Use Case

Higher Order Control Loop: VNF and Service scaling across multiple cloud instances

For Day 1 deployment of ONAP and going forward, dynamic scaling of VNF/service instances would entail the following:

Horizontal scale out of the VNF within the existing cloud instance (VNF scaling) provided there is enough capacity within the cloud instance
Horizontal scale out of the VNF to a new cloud instance (Service scaling) by creating a new VNF instance and other appropriate actions

The metrics needed for assessing the available capacity and the target cloud instance to migrate to (if needed) are:

Infrastructure Metrics/KPIs from Multi Cloud
Application Metrics/KPIs from DCAE

While some of these steps could arguably be provided by other ONAP components, the OOF is well positioned to provide a more holistic solution as part
of homing and related optimization services. Ongoing work focuses on design this solution as simple API calls, so that individual components of this
optimization application can be extracted and ingested into relevant ONAP framework or application components.

Release Planning
Amsterdam Release: OOF did not participate in the Amsterdam Release
Beijing Release:

This is the first release. Details on the commitments, user stories, etc., are available at the Beijing Release Page
Seed code from AT&T was onboarded by mid-January, 2018

Improvement of OOF by ingesting advances from open source efforts and new code

This process will merge new code being designed and developed collaboratively as part of the OOF project. The Beijing release epics and user stories
capture the steps in reaching the target OOF platform for Beijing release.

Deployment Process

Linkages to different components and API's

Unit Tests and Code Coverage

Containerization and Deployment

Integration Tests

Links to Relevant Resources

Optimization and Minizinc Related Resources

Minizinc provides an open source constraint modeling language/platform for specifying optimization applications. It contains direct interfaces to CO
, and . Additionally, support minizinc via FlatZinc interfaces. IN-OR CBC Gurobi IBM ILOG CPLEX many optimization projects

https://wiki.onap.org/pages/viewpage.action?pageId=15992204
https://wiki.onap.org/display/DW/OOF+Beijing+Release+Planning
http://www.minizinc.org/
https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Cbc
#
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.minizinc.org/software.html

2.

3.

1.
a.
b.

2.
3.
4.
5.

1.

1.

1.

2.

The provides a subset of constraints form the as a high-level abstraction that have efficient Minizinc standard library global constraint catalogue
algorithms implemented by several solvers.
The Minizinc team has developed courses on optimization and using Minizinc on Coursera. The and Basic Modeling for Discrete Optimization Adv

 courses provide an in-depth introduction to constraint modeling using MiniZinc.anced Modeling for Discrete Optimization

Links to major ONAP components

ONAP Stack
ONAP Installation on Vanilla OpenStack
OOM for deployment and management of core ONAP stack. Installation instructions for Kubernetes: ONAP on Kubernetes

Policy system
Active and Available Inventory (AAI)
Service Orchestrator Project
Multi VIM/Cloud Project

Important Links

Håkan Kjellerstrand's page on Optimization Tools

Resources related to open issues

Questions on policy resolution. How do we manage a set of policies that are specified in a distributed manner. For example, if the VNF vendor
specifies some policies, the site administrator provides corresponding optional "site-wide" policies, and an operator optionally provides over-ride
policies. For initial releases, we anticipate that all relevant policies are in the same name-space for the application (which will mean that policies
have to be replicated for each scenario, instead of hierarchically infer at run-time).

Feature Roadmap/Wishlist

Ingestion of new advances from open source optimization efforts

Explore aspects of uncertainty and robustness for optimization applications. For example, how do we develop an optimization solution for a future
point of time, assuming that events between now and then can impact the validity or cost associated with the solution.
Explore how to develop optimization solutions when the input data has uncertainty (e.g. lagged data or aggregate summaries that we can get
from some systems such as Multicloud).

http://www.minizinc.org/doc-lib/doc-globals.html
http://sofdem.github.io/gccat/gccat/content.html
https://www.coursera.org/learn/basic-modeling
https://www.coursera.org/learn/advanced-modeling
https://www.coursera.org/learn/advanced-modeling
https://wiki.onap.org/display/DW/ONAP+Installation+in+Vanilla+OpenStack
https://wiki.onap.org/pages/viewpage.action?pageId=3246809
https://wiki.onap.org/display/DW/ONAP+on+Kubernetes
https://wiki.onap.org/display/DW/Policy
https://wiki.onap.org/pages/viewpage.action?pageId=1015836
https://wiki.onap.org/display/DW/Service+Orchestrator+Project
https://wiki.onap.org/pages/viewpage.action?pageId=6592841
http://hakank.org/

	Optimization Service Design Framework

