
Application Authorization Framework (AAF) Documentation
https://bestpractices.coreinfrastructure.org/projects/2303/badge

AAF is designed to cover Fine-Grained Authorization, meaning that the Authorizations provided are able to used an Application’s detailed authorizations,
such as whether a user may be on a particular page, or has access to a particular Pub-SUB topic controlled within the App.

This is a critical function for Cloud environments, as Services need to be able to be installed and running in a very short time, and should not be
encumbered with local configurations of Users, Permissions and Passwords.

To be effective during a computer transaction, Security must not only be secure, but very fast. Given that each transaction must be checked and validated
for Authorization and Authentication, it is critical that all elements on this path perform optimally.

 2.0 RESTful interfaceAAF
Accessing RESTful

Connecting to AAF
Methods to Connect
J2EE (Servlet Filter) Method
Servlet Code Snippet
Sample Servlet (Working example)
Java Direct (Lur) MethodAAF

Certificate Manager

Overview

Every secure transaction requires 1) Encryption 2) Authentication 3) Authorization.

https://bestpractices.coreinfrastructure.org/projects/2303/badge
http://onap.readthedocs.io/en/latest/submodules/aaf/authz.git/docs/AAF-API-Documentation/AAF-API-Documentation.html
http://onap.readthedocs.io/en/latest/submodules/aaf/authz.git/docs/AAF-API-Documentation/AAF-API-Documentation.html#accessing-restful
http://onap.readthedocs.io/en/latest/submodules/aaf/authz.git/docs/AAF-API-Documentation/Connecting-to-AAF.html
http://onap.readthedocs.io/en/latest/submodules/aaf/authz.git/docs/AAF-API-Documentation/Connecting-to-AAF.html#methods-to-connect
http://onap.readthedocs.io/en/latest/submodules/aaf/authz.git/docs/AAF-API-Documentation/Connecting-to-AAF.html#j2ee-servlet-filter-method
http://onap.readthedocs.io/en/latest/submodules/aaf/authz.git/docs/AAF-API-Documentation/Connecting-to-AAF.html#servlet-code-snippet
http://onap.readthedocs.io/en/latest/submodules/aaf/authz.git/docs/AAF-API-Documentation/Connecting-to-AAF.html#sample-servlet-working-example
http://onap.readthedocs.io/en/latest/submodules/aaf/authz.git/docs/AAF-API-Documentation/Connecting-to-AAF.html#java-direct-aaflur-method

HTTP/S provides the core Encryption whenever used, so all of AAF Components require HTTP/S to the current protocol standards (current is TLS
1.1+ as of Nov 2016)

HTTP/S requires X.509 certificates at least on the Server at minimum. (in this mode, 1 way, a client Certificate is generated)
Certificate Manager can generate certificates signed by the AT&T Internal Certificate Authority, which is secure and cost effective if
external access are not needed
These same certificates can be used for identifying the Application during the HTTP/S transaction, making a separate UserID/Password
unnecessary for Authentication.

Authentication - In order to tie generated certificates to a specific Application Identity, AAF Certificate Manager embeds an Identity Lifecycle
Management (ILM) AppID in the Subject. These are created by AT&T specific Internal Certificate Authority, which only generates certificates for
AAF Certman. Since AAF Certman validates the Sponsorship of the AppID with requests (automatically), the end user can depend on the AppID
embedded in the Subject to be valid without resorting to external calls or passwords.

ex:
Authorization - AAF Certman utilizes AAF's Fine-grained authorizations to ensure that only the right entities perform functions, thus ensuring the
integrity of the entire Certificate Process

Design and Mechanisms

Use CMAgent for Artifact Management

Preparation

Use latest Jar File - Get it (Open Sourced Version)Code Access Data Identity (CADI) from Maven Central

Creation

IMPORTANT! if you are using Self-Renewal processes, you MUST include "jks" for Types

CMAgent Creation

Create Certman Artifact# FOR TEST

https://docs.onap.org/en/elalto/submodules/aaf/authz.git/docs/sections/architecture/cadi.html
https://mvnrepository.com/artifact/com.att.cadi

1.
2.

3.
a.
b.

java -jar /opt/app/cadi/1.3.1/lib/cadi-aaf-1.3.2-full.jar cm_url=https://aaftest.onap.org:8150 create

UserID (dgl@openecomp.org):

Global Login Password:

AppID: a123@myapp.onap.org

Machine: xyz.com

Types (file,jks): jks

Sponsor dgl@openecomp.org

ConfigFile RootName: org.onap.myapp

CA: aaf

Directory: /opt/app/myapp

OS User (zz9999): zz9999

2016-07-28T09:37:48.402-0500: X509 validation turned off

2016-07-28T09:37:48.455-0500: Call to AAF Certman successful a123@myapp.onap.org, xyz.com

Creating & Deploying Certificates With Certman
Step 1: Prerequisites
Step 2: Create Artifacts
Step 3: Create/Assign Permission

Create Certman Permission
Grant Certman Permission to a Role

Step 4: Deploy/Install Certificates
Notes:
Self Renewal

Setting up Self-Renewal:
Other uses:

Step 5: (optional) Give Your Clients a Truststore File
Special Cases - Templates

Vanity URL:
Domain:

Step 1: Prerequisites

The majority of the setup is for establishing the Application's Identity in AAF and ILM. This is required to ensure the chain of responsibility from the
Certificates to the Sponsor of the AppID. If your app already uses AAF, that can be skipped. If a AppID is already established for AppID/Password, that
one should be used. Do not obtain another one.

ILM enrolled AppID, because these are about Applications
AAF Namespace, so we can ensure only the right people may generate a certificate purporting to be that identity

Steps 1 and 2 are accomplished by following these instructions: OnBoarding <Link Dead>
Install CADI (Latest Version) on boxes where you will use "CMAgent"

Java, should be 1.8+ (1.7 still works)
Direct Jar Method - this is the best way to use Certificate Manager Agent...

Step 2: Create Artifacts

The App Owner (Should be the Namespace Owner AND the Sponsor of Record of the AppID in ILM Records). Follow these instructions: GUI Instructions

NOTE:

if you want self-renewing certificates, make sure to chose "jks" as an artifact type in step 7
in step 7, "Directory" must be writable by the user listed in "O/S User". If an application is going to use cadi + certificates, ensure that the process
is run by the same user as "O/S User". Information on Unix/Linux file permissions can be found by googling, for instance this post.
in step 11 ("Copy Artifact"), make sure the list of machines you enter does not contain whitespace
Alternatively, the GUI can be skipped by following these instructions: . In most cases, users should use the Use CMAgent for Artifact Management
GUI instructions above

file:///C:/Users/sg481n/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/GREEMQ9G/2.Creating++Deploying+Certificates+With+Certman.doc#Creating&DeployingCertificatesWithCertm
file:///C:/Users/sg481n/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/GREEMQ9G/2.Creating++Deploying+Certificates+With+Certman.doc#Creating&DeployingCertificatesWithCertm
file:///C:/Users/sg481n/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/GREEMQ9G/2.Creating++Deploying+Certificates+With+Certman.doc#Creating&DeployingCertificatesWithCertm
file:///C:/Users/sg481n/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/GREEMQ9G/2.Creating++Deploying+Certificates+With+Certman.doc#Creating&DeployingCertificatesWithCertm
file:///C:/Users/sg481n/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/GREEMQ9G/2.Creating++Deploying+Certificates+With+Certman.doc#Creating&DeployingCertificatesWithCertm
file:///C:/Users/sg481n/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/GREEMQ9G/2.Creating++Deploying+Certificates+With+Certman.doc#Creating&DeployingCertificatesWithCertm
file:///C:/Users/sg481n/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/GREEMQ9G/2.Creating++Deploying+Certificates+With+Certman.doc#Creating&DeployingCertificatesWithCertm
file:///C:/Users/sg481n/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/GREEMQ9G/2.Creating++Deploying+Certificates+With+Certman.doc#Creating&DeployingCertificatesWithCertm
file:///C:/Users/sg481n/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/GREEMQ9G/2.Creating++Deploying+Certificates+With+Certman.doc#Creating&DeployingCertificatesWithCertm
file:///C:/Users/sg481n/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/GREEMQ9G/2.Creating++Deploying+Certificates+With+Certman.doc#Creating&DeployingCertificatesWithCertm
file:///C:/Users/sg481n/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/GREEMQ9G/2.Creating++Deploying+Certificates+With+Certman.doc#Creating&DeployingCertificatesWithCertm
file:///C:/Users/sg481n/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/GREEMQ9G/2.Creating++Deploying+Certificates+With+Certman.doc#Creating&DeployingCertificatesWithCertm
file:///C:/Users/sg481n/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/GREEMQ9G/2.Creating++Deploying+Certificates+With+Certman.doc#Creating&DeployingCertificatesWithCertm
file:///C:/Users/sg481n/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/GREEMQ9G/2.Creating++Deploying+Certificates+With+Certman.doc#Creating&DeployingCertificatesWithCertm
file:///C:/display/aaf/AAF+OnBoarding
file:///C:/display/aaf/Use+AAF+GUI+for+CM+Artifact+Creation
https://www.techrepublic.com/article/linux-file-and-directory-permissions/
file:///C:/display/aaf/Use+CMAgent+for+Artifact+Management

Step 3: Create/Assign Permission

Use AAF's GUI > Command Prompt to create the following permission and assign it to a role. Pick the GUI for the appropriate environment from Application
Authorization Framework

Create Certman Permission

Replace "<ns>" with the name of the application's namespace.

Create Permission

perm create com.att.<ns>.certman aaf request

Grant Certman Permission to a Role

For instance if, the deployer is an admin of the app's namespace, grant the permission created above to <ns>.admin. For information on how to create a
new role, or to assign a user to a role, see . Replace "<ns>" with the name of the application's namespace. Documentation for Namespace Admins
Replace "<some-role" with the name of the deployer's role.

Grant Permission to Role

perm grant com.att.<ns>.certman aaf request <ns>.<some-role>

Notes:

 For details on creating roles, adding users to roles, etc, see: Documentation for Namespace Admins
You may use your AppID's password instead of a Deployer's name, but it MUST BE FULLY QUALIFIED AppID, i.e. a123@myapp.onap.org
Step 4: Deploy/Install Certificates

With AAF Certman, all private keys, certificates and supporting files are delivered directly to the machine in question into the directories specified by the
Artifact Creation step above. The point of "CRON" is to have the Machine itself check regularly for the Certificate's expiration, and have the machine
request Renewal at the right time.

The steps for the are designed to be taken by either a person, in the case of Operations Personnel, or automatically. In either case, first deployment only
they simply need to be able to establish their Identity to the Certman process. For a Person, the program will ask for their Global Login ID. For an
automated process, (i.e. VM Creator/deployer), identity must still ultimately be established for the process. After the , renewals are done firs t deployment
automatically given the Certificate Credentials in question.

Machine Requirements:

Java 1.7+ (must be at least JDK 1.7, because communications use TLS 1.1+ per ILM Requirement, and JDK 1.6 does not natively support.)

cron (or equivalent scheduler) Cron is ubiquitous on standard Linux VMs. Other schedulers can be used, but the user must make the modifications.

These steps are for an Operations Person to perform. As stated above, a VM Creating process could perform, but the details should be worked out with
Tier 3.

Login

sudo, if necessary, to the O/S User which was stated in the "Artifact Create" statement
Run the following program in Java (it doesn't matter which directory)

Note that the ID Used must be a DEPLOYER. This means it is either the AppID itself (if User/Password exists), or someone with the appropriate AAF
Permission granted to them.

Place Certificates on Disk

> java -jar /opt/app/cadi/1.3.2/lib/cadi-aaf-1.4.0-full.jar place a123@myapp.onap.org mymachine.domain.onap.org

 UserID (dgl@openecomp.org):

 Global Login Password:

 2016-07-28T09:47:50.194-0500: X509 validation turned off

 Reconstitute Certificates 2.319999ms

 Reconstitute Private Key 0.114307ms

file:///C:/display/aaf/Application+Authorization+Framework
file:///C:/display/aaf/Application+Authorization+Framework
file:///C:/display/aaf/Documentation+for+Namespace+Admins
file:///C:/display/aaf/Documentation+for+Namespace+Admins
mailto:a123@myapp.onap.org

NOTE: If you make a mistake in the URL or your Password, run the following:

> java -jar /opt/app/cadi/1.3.2/lib/cadi-aaf-1.3.2-full.jar -logout

and try again.

" " is the AppID reference to the Artifacta123@myapp.onap.org
" " is the fully qualified Machine Name (FQDN), which matches an Artifiact in Certificate Manager (see above mymachine.domain.att.com
for creation)

 See "Templates" below for Special Cases
For Automation purposes, CMAgent will try the Java Default for machine if not on Command Line. Whether this returns a fully
qualified name (FQDN) may depend on setup. Another option for automation (in Linux) may be replacing "my machine.domain.

" with "`uname -n`. " att.com domain.att.com

Results in the directory if "type=jks" would be:

Type=jks

-r-------- 1 abc123 staff 2074 Jul 27 17:53 myns.keyfile

-r-------- 1 abc123 staff 2625 Jul 28 09:47 mynsTrust.jks

-r-------- 1 abc123 staff 392 Jul 28 09:47 myns.props

-r-------- 1 abc123 staff 4186 Jul 28 09:47 myns.jks

-r-------- 1 abc123 staff 87 Jul 28 09:47 myns.chal

Results in the directory if "type=file" would be:

Type=file

-r-------- 1 abc123 staff 2074 Jul 27 17:53 myns.keyfile

-r-------- 1 abc123 staff 1713 Jul 28 09:34 myns.key

-rw-r--r-- 1 abc123 staff 3899 Jul 28 09:34 myns.crt

-r-------- 1 abc123 staff 87 Jul 28 09:34 myns.chal

Results in the directory if "type=script" would be:

Type=script

-rw-r--r-- 1 abc123 cssari 1454 Nov 9 14:42 org.onap.myapp.check.sh

-rw-r--r-- 1 abc123 cssari 736 Nov 9 14:42 org.onap.myapp.crontab.sh

Notes:

Multiple Types are separated by commas: "type=jks,file,script" to get all of them.
Great lengths have been taken to ensure that as few special variables are required for Deployment as possible

Self Renewal

Generating the "scripts" are the key to making Certificates Self-Renewing. Always add these scripts for Unix Based Systems. You will have to work your
own solution for other O/Ss that don't have "cron".

!! If you use Self Renewal, you MUST have the "jks" files generated!!

Setting up Self-Renewal:

After deploying certificate above, test the Certificate access with the "check.sh" script
ALL THE SELF-RENEWAL SCRIPTS ARE "bash" Scripts. If you are not running a bash shell, use "bash" as prefix
Check the Certificate ID is working

· # Validate that Certificate can be used to contact Certificate Manager

mailto:a123@myapp.onap.org
http://mymachine.domain.att.com/
http://machine.domain.att.com/
http://machine.domain.att.com/
http://domain.att.com/

1.
a.
b.
c.

i.
d.

i.

ii.

iii.

iv.
v.

· bash> bash org.onap.myapp.check.sh; cat *STD*

· 2016-11-11T07:53:24.280-0500: cadi_keyfile points to /opt/app/myapp/org.onap.myapp.keyfile

· 2016-11-11T07:53:25.256-0500: PropertyLocator enabled with https://aafcrl.test.att.com:8150

· 2016-11-11T07:53:25.572-0500: X509Certificate for a123@myapp.onap.org on xyz.com has been checked on
2016-11-11. It expires on Tue May 09 15:41:58 EDT 2017; it will not be renewed until 2017-04-09.

· 2016-11-11T07:53:25.580-0500: Trans Info

· REMOTE Check Certificate 322.62177ms

·

· # --- Note that the Check Process will create 3 output files

· bash> ls -l

· -rw-r----- 1 abc123 cssari 0 Nov 11 07:53 org.onap.myapp.STDERR

· -rw-r----- 1 abc123 cssari 182 Nov 11 07:53 org.onap.myapp.msg

· -rw-r----- 1 jabc123 cssari 491 Nov 11 07:53 org.onap.myapp.STDOUT

·

· # -- These can be checked at any time. If successful, STDERR size should be zero, but will populate
when there is a problem.

· # -- The "msg" file is the result of the check.sh, showing the Check Date and the Expiration Date

Once the "check.sh" is ensured to work, add the nightly Check to Cron (in Unix).

The crontab.sh script will overwrite it's own entry, but not others
The crontab.sh script will randomize minutes and hours between 1:00 am and 3:59am, local machine time.
The very first night the script invokes, and email will be sent to the Artifact Notification of success/failure

After that first night, emails are only sent on Failure and Renewal
IF, and only if, there is a script in the same directory, , it will be invoked on Renewal<dir>/<ns>.restart.sh

The purpose of this mechanism is because while a Certificate may be renewed and regenerated, it is unlikely the Container/App
knows about it, and probably needs bouncing before the Certificate takes effect. Not planning for this step will give you an
Outage just as if you forgot to change your Certificate manually.
This script is NOT generated, because there are too many different ways and cases for start versus non-starting of
services. The End App is responsible write any such service
IF the App intends to write such a Script, it would be VERY wise to avoid the possibility of Certificate Renewal on the same
night for all instances of the APP.
Good Idea: One group uses this to create a Task in their Work Queues.
AAF is not Responsible for the App's Script working, or for what it does. YOU MUST DO your own testing, and thought
processes behind restarts. Be WISE, Be Responsible

Crontab

Optional... validate what is in Crontab now

bash > crontab -l

Someone Else's Cron info

3 3 3 3 3 /bin/bash /someone's nightly process

####

bash > bash com.att.myapp.crontab.sh

bash > crontab -l

Someone Else's Cron info

3 3 3 3 3 /bin/bash /someone's nightly process

####

BEGIN com.att.myapp Certificate Check Script

57 1 * * * /bin/bash /home/abc123/myapp/org.onap.myapp.check.sh >> /home/abc123/myapp/cronlog 2>&1

END org.onap.myapp Certificate Check Script

Other uses:

Once the Certificates are generated, they may be used for certain accesses to Certificate Manager Agent... but only those functions given to the
App

CMAgent

bash> java -jar /opt/app/cadi/1.3.2/lib/cadi-aaf-1.3.2-full.jar cadi_prop_files=org.onap.myapp.props read

2016-11-11T10:26:48.761-0500: cadi_keyfile points to /home/abc123/myapp/org.onap.myapp.keyfile

2016-11-11T10:26:49.746-0500: PropertyLocator enabled with https://aafcrl.test.att.com:8150

AppID: a123@myapp.onap.org

 Sponsor: dgl@openecomp.org

Machine: xyz.com

CA: aaf

Types: jks,script

Namespace: org.onap.myapp

Directory: /home/zz9999/myapp

O/S User: zz9999

Renew Days: 30

Notification mailto:dgl@openecomp.org

2016-11-11T10:26:50.177-0500: Trans Info

 Read Artifact 429.56503ms

Please note that the only those entities given the "Deploy" permission may see the Passwords encrypted within
the Property Files

bash> java -jar /opt/app/cadi/1.4.0/lib/cadi-aaf-1.3.2-full.jar cadi_prop_files=org.onap.myapp.props showpass

2016-11-11T10:29:29.994-0500: cadi_keyfile points to /home/zz9999/myapp/org.onap.myapp.keyfile

2016-11-11T10:29:30.896-0500: PropertyLocator enabled with https://aafcrl.test.att.com:8150

2016-11-11T10:29:31.579-0500: SVC1403 Forbidden: a123@myapp.onap.org does not have Permission.

2016-11-11T10:29:31.580-0500: Trans Info

 REMOTE Show Password 682.36285ms

bash> java -jar /opt/app/cadi/1.3.2/lib/cadi-aaf-1.3.2-full.jar cm_url=https://aaftest.onap.org:8150 showpass
a123@myapp.onap.org

Your Identity: dgl@openecomp.org ## Must be an entity with Deploy Permission

Password:

2016-11-11T10:34:58.296-0500: PropertyLocator enabled with https://aaftest.onap.org:8150

2016-11-11T10:34:58.613-0500: Cannot validate X509 Client Validity: No TrustStore set ## Note: this is ok, if
you're sure you have the right Certman

cadi_truststore_password=I*AM(*A*(*GENERATED(*()TRUSTSTORE&PASSWORD

cadi_key_password=I*AM(*A*(*GENERATED(*()PASSWORD

cadi_keystore_password=I*AM(*A*(*GENERATED(*()PASSWORD

ChallengePassword=I*AM(*A*(*GENERATED(*()CHALLENGE&PASSWORD

2016-11-11T10:34:59.743-0500: Trans Info

 REMOTE Show Password 1443.2354ms

Special Cases - Templates

Note: ILM no longer requires special exceptions for SANs. You may add them in your Artifact at creation time.

The default case for Certificate Manager is to certificates for the specific machine with Authorization. Since it is very simple to create Certificates, and have
them renewed automatically, one of the main reasons for SANs is removed (the difficulty of creating and managing certificates).

Templates are only available for VM Creating Deployment tools, where it is the only solution. You must get a Permission applied by AAF Team to make
this happen:

com.att.aaf.ca|aaf|domain

There are two varieties of templates that are designed to make creating certificates in today's more dynamic environment

Vanity URL:

Many services have Vanity URLs (or Round Robin). AAF is one of these. Normally, Certificate Manager validates whether the deployment call is made
from the Artifact created. With the "Vanity URL Template", when deploying a new certificate, the check is made whether the incoming request for
deployment is made from on of the machines in the Vanity URL, if so, then it is accepted, and a new Artifact is created for that machine is created in the
Template Image for the particular machine requesting.

How this works:

The "machine" when creating the Authorization Artifact (see above), is created with the vanity URL, i.e. .aaf.onap.org

Note: Because it assumed that the Vanity URL should be part of the "SAN" list, you need to have the approval for SAN, see above.

When deployed, the new Artifact is generated from the Template, which enables tracking of renewals etc.

When Deploying, adding the "machine" on the command line is required in the format: <vanity URL>:<real machine name>[:<additional SAN>]*

Domain:

The "Domain" is a special case, used strictly by Dynamic VM creators, and similar tools. In this case, the AppID owner specifies that his AppID may
deployed on any in a specific domain, such as "*. ". This approval requires special ILM exception as well as AAF approval, and when vmgroup.onap.org
accepted, the permission " |aaf|domain" is grantorg.onap.aaf.ca

How this works:

The "machine" when creating the Authorization Artifact (see above), is created with the domain starting with *, example: "*. "vmgroup1.org.onap

When deployed, the new Artifact is generated from the Template, which enables tracking of renewals, etc.

When Deploying, adding the "machine" on the command line is required in the format: <domain>:<real machine name>[:<additional SAN>]*

Modification to "Place" command

> java -jar /opt/app/cadi/1.3.2/lib/cadi-aaf-1.3.2-full.jar place a123@myapp.onap.org "*.vmgroup1.onap.org:
test123.vmgroup1.onap.org:san1.onap.org:san2.onap.org"

Hardware Security in AAF

http://com.att.aaf.ca/
http://aaf.dev.att.com/
http://vmgroup1.vci.att.com/
http://com.att.aaf.ca/
http://vmgroup1.vci.att.com/

	Application Authorization Framework (AAF) Documentation

