OOF Beijing (R2) Functional Testing planning

Table of Contents
® Test Planning for OOF Optimization Service Design Framework (OOF-OSDF)
© Abbreviations Used
© OOF-OSDF Beijing Release CSIT Functional Test Cases
© Example Request/Response Payloads for OOF-OSDF Functional Test Cases
® Test Planning for OOF Homing and Allocation Service (OOF-HAS)
® Appendix A: Overview of ONAP Testing Requirements
® Appendix B: Overview of OOF Scope
© Qverview of OOF-OSDF Scope
® General Description
® Technical Description for OOF-OSDF Functionality related to OOF-HAS
© OQOverview of OOF-HAS Scope
® General Description
® Technical Description for OOF-HAS Functionality
® Appendix C: Resources and Links

Test Planning for OOF Optimization Service Design Framework (OOF-OSDF)

The test structure here has been adapted from Policy Team's CSIT Functional Test Cases created by Pamela Dragosh

Abbreviations Used

The following abbreviations are used in the functional test case description below since there may be substantial repetition along with clarification notes
associated with some terms:

Abbreviations:
1. CHECK-REQ-OR-OPTIONAL

a. Check if the test is required or optional. For instance, health checks for dependencies is likely optional because this will be captured in
the tests for request/response
2. EMULATORS-OR-SERVICES-ARE-UP

a. Emulator or service should be up and running
b. Emulator or service configuration file should be available and loaded
c. Notes: For OOF internal components (e.g. OOF-OSDF connecting to OOF-HAS API), real services may be used when convenient
3. HTTP-200-TRUE
a. Component (or all components) should return health status as “true” (HTTP response code of 200, response content containing the
string "true")
b. Notes: (a) Verify whether the external components also have standardized on "true" as the value
4. SIMPLE-GET-HEALTH-CHECK-API
a. API: healthcheck
b. HTTP Request Method: GET
c. HTTP Endpoint: http://<host>:<port>/healthcheck
d. Notes: (a) check whether https can/should be used, and whether mutual TLS is required when using OOM/K8S, and
(b) verify if the health check is required for dependencies (it will help in quickly debugging but will add extra logic in our testing)
5. SIMPLE-GET-POST-TO-EMULATORS-OR-SERVICES
a. API: specific to each component
b. Endpoint: http://<host>:<port>/<specific-API>
c. Method - POST in most cases; GET in some cases
d. Notes: (a) check whether https can/should be used, and whether mutual TLS is required when using OOM/K8S

OOF-OSDF Beijing Release CSIT Functional Test Cases

Id Description Pre-conditions Test Steps Expected Results
A: Health Checks for OOF-OSDF Components and Dependencies (Policy and OOF-HAS API)

A. Perform health check for the OOF-OSDF components using Health Check [OSDF Manager] SIMPLE-GET-HEALTH-CHECK-API HTTP-200-TRUE

1 API EMULATORS-OR-
SERVICES-ARE-UP

® OSDF Manager

Server and
authentication details
should be configured
at 5OOF_HOME
[config/feature-
healthcheck.
properties

https://wiki.onap.org/display/DW/Policy+R2+Beijing+CSIT+Functional+Test+Cases
https://wiki.onap.org/display/~pdragosh

400K

2 Per health-cheeck-forthe-folowi !

£l
Health-Check- AR

@

: Fetch Data from Emulators (valid and invalid data, via GET and POST)

Retrieve response corresponding to "valid request"” from HAS-API emulator

=W

* OSDF HAS (POST data)

B. Retrieve response corresponding to "valid policy query" from Policy emulator

2
® OSDF Policy (POST query data)
B. CHECK-REQ-OR-OPTIONAL
3 OSBFPeliey-thadresuly
OSDFHASH{GETbad-status)

Moved to another cell
oS HACS (/‘I:T- Lot £ ,4)

B. Retrieve response corresponding to a decision from Conductor (i.e. "done"
4 with either a solution found or no solution found):

OSDF HAS (GET; solution found OR no solution found).

Since we cannot guarantee whether a solution can be found (it is
dependendent on dynamic state of the cloud instance), it may be better to
merge it to a "solution found OR no solution found" — i.e. Conductor is done
processing and gave a decision

C: Run Complete Requests for Different Applications

C. SO OSDF HAS (well formatted request)
1

+ Conduct

through-OSDFbut-fail

SO OSDF HAS OSDF Call Back URL

w O

A valid request sent from SO to OSDF, which results in a valid template sent
from OSDF to HAS. OSDF will then poll HAS till a decision is made (i.e.
"done" with either a solution found or no solution found; it is probably difficult
to ensure a solution is guaranteed — it is great if a solution is found, and it is
OK for testing purposes even if there if no solution in some cases)

fPoliey-Emulater] SHURLE-GETHEALTH-CHEGK-ARH
[oOFHASARL—
coRtaRerar
ettater EMBEATO
RS-ORSERVCES-
AREUR

SIMPLE-GET-POST-TO-EMULATORS-
OR-SERVICES

[OOF-HAS API —
container or emulator]
EMULATORS-OR-
SERVICES-ARE-UP | TODO: Payload for OSDF-HAS request
(based on SO-OOF/HAS Request
Example below in section on payloads; An
kitkumar Patel to add the payload; Shankar
anarayanan Puzhavakath Narayanan to
review)

TODO: Endpoint and ports

SIMPLE-GET-POST-TO-EMULATORS-
OR-SERVICES

[Policy]

EMULATORS-OR-

SERVICES-ARE-UP
TODO: Payloads and Endpoint

{Roliey-Emutater SHMPREE-GETF-ROSTFO-EMUEATORS-
[OOHASARL— OR-SERVCES
contaiReror
emudlatof - EMULATO | FODO—PRayiead a-End

= 24 P
RS-OR-SERVCES-
AREUR

SIMPLE-GET-POST-TO-EMULATORS-
OR-SERVICES

[Policy Emulator]
[OOF-HAS API —
container or
emulator] EMULATO
RS-OR-SERVICES-
ARE-UP

TODO: Payloads and Endpoint

SIMPLE-GET-POST-TO-EMULATORS-
OR-SERVICES

[Policy Emulator]
[OOF-HAS API —
container or

emulator] EMULATO | TODO: Payloads, Endpoint, and Call-Back

RS-OR-SERVICES- URL

ARE-UP

[E.e')E Ha&e s' EEG’ELP‘GSHQ‘EW‘:A;FQRS'
[oOFHAS-ARI— OR-SERMCES

containeror

emutator-EMUEATO | TOBO:-PayleadsEndpeint-and-Call-Back
RS-ORSERMCES- URE

ARE-LR

[Policy Emulator]
[OOF-HAS API —
container or
emulator] [SO-OOF-
OSDF call-back
receiver]

[Policy Emulator]
[OOF-HAS API — container or emulator] E
MULATORS-OR-SERVICES-ARE-UP

EMULATORS-OR-
SERVICES-ARE-UP

Example Request/Response Payloads for OOF-OSDF Functional Test Cases

SO-OOF/HAS Request Example

"requestinfo": {
"transactionld": "XXX-XXX-XXXX",

"requestd": "yyy-yyy-yyyy",

HHR-200FRUE

NOTE: Per comment and discussion
with Ramki, removing this cell

TODO: Retain this cell till
19 Feb 2018 and then remove it.

Should receive a "request accepted"
type response, following which we
query status and the status should be
a valid one (translating, translated,
solving, solved, solution not found,
etc.)

Should receive response for valid
policy query

TODO: Payloads
Sh, ld " =H

respenses
FOBO:Payleads

NOTE: Per comment and discussion
with Ramki, removed tests for
"malformed" requests (open to
adding them later on as needed).
Moved the remaining one to a
separate cell.

TODO: Retain this cell till
19 Feb 2018 and then remove it.

TODO: Check format of response
and valid status messages

Should receive a valid Conductor
reponse

TODO: Payloads

Shetid-receive-a-ReguestErrororan
error-from-Conduetor
FOoboPayleads

NOTE: Per comment and discussion
with Ramki, removing this cell

TODO: Retain this cell till
19 Feb 2018 and then remove it.

Should receive a "done" type
Conductor reponse (either successful
in finding a solution or failed to find a
solution, but Conductor made a
decision either way)

TODO: Payloads

https://wiki.onap.org/display/~ankit7453
https://wiki.onap.org/display/~ankit7453
https://wiki.onap.org/display/~snarayanan
https://wiki.onap.org/display/~snarayanan

"cal | backUrl": "https://so:5000/cal | backUrl",
"sourceld": "SO',
"request Type": "create",
"nunBol utions": 1,
"optimzers": ["placement"],
"timeout": 600
b
"request Par anet ers":
"pl acenment Demands": [

{

{ "custonerlLatitude": 32.89748,

"resour ceMbdul eNane": "vGWxlnfra",
"servi ceResourcel d": "vG@WxInfra-xx",
"tenant|d": "vGWxlnfra-tenant",
"resour ceModel I nfo": {
"nodel I nvariant1d": "vGwxl nfra-nodel | nvariant|d",
"nmodel Versionld": "vGwxlnfra-versionld",
"nodel Nanme": "vG@wxI nfra-nodel ",
"nmodel Type": "resource",
"model Version": "1.0",

"model Cust oni zati onName": "vGWuxl nfra- cust oneMbdel Nane"

},
"exi stingCandi dates": {
094e52bc873b"] },
"excl udedCandi dat es": {
c3f 372b8236d"] },
"requiredCandi dat es": {
d0896998f 7ec"] }
H
{

"identifierType":
"identifierType":

"identifierType":

"resour ceMbdul eNane" :
"servi ceResourcel d": "71d563e8-e714-4393-8f 99-cc480144a05e",
"tenantld": "vGtenant",
"resour ceModel I nfo": {
"nmodel I nvariant1d": "vG nodel | nvariantld",
"model Versionld": "vG versionld",
"nmodel Nane": "vG nodel ",
"model Type": "resource",
"model Version": "1.0",
"model Cust omi zati onNane":

"vG',

"vG cust oneModel Nane"

}

cc480144505a"] },
"excl udedCandi dat es":
c3f 372b8236d"] },
"requiredCandi dat es":

{ "identifierType":

{ "identifierType": "cloud_region_id",
}

1,

"servicelnfo": {
"servicel nstancel d":
"servi ceModdel I nfo": {

"nodel I nvariantd":
"nodel Versionld":

"d61b2543- 5914- 4b8f - 8e81- 81e38575b8ec",

"VvCPE-invariantld",
"vCPE-versionl d",

"nodel Nane": "vCPE-nodel ",
"nmodel Type": "service",
"nodel Version": "1.0",

"nodel Cust om zati onNane": "vCPE-cust oneModel Nange"

}
I
"licenseDemands": [

{

"resour ceMbdul eNane": "vGwxlInfra",

"servi ceResourcel d": "vG@GWWxl nfra-xx",

"tenant|d": "vG@GWxInfra-tenant",

"resourceModel I nfo": {
"nodel | nvariant1d": "vGwxl nfra-nodel | nvariant|d",
"nodel Versionld": "vG@wxlnfra-versionld",

"nmodel Nanme": "vG@wxl nfra-nodel ",
"nmodel Type": "resource",
"nmodel Version": "1.0",

"nodel Cust om zati onNane": "vGWuxl nfra-cust oneMbdel Nane"

"cust oner Longi t ude":

"service_instance_id",
"service_instance_id",

"service_instance_id",

xi stingCandi dates": { "identifierType": "service_instance_id",

"service_instance_id",

-97.040443, "custonerNanme": "xyz" },

"identifiers": ["87257b49-9602-4cal-9817-

"identifiers": ["lac71fb8-ad43-4el6-9459-

"identifiers": ["7e6c3e57-62cd-44f 6- aa88-

"identifiers": ["21d5f3e8-e714-4383-8f99-

"identifiers": ["lac71lfb8-ad43-4el6-9459-

"identifiers": ["TXAUS219"] }

"exi stingLi censes": {
"entitlenment Pool UUI D': ["87257b49-9602-4cal- 9817- 094e52bc873b", "43257b49-9602- 4f e5- 9337- 094e52bc9435"],
"l'i censeKeyG oupUUI D': ["87257b49-9602- 4cal- 9817- 094e52bc873b", "43257b49-9602- 4f e5- 9337- 094e52bc9435"]
}
}
]
}

SO-OOF/HAS Response Example

"transactionld": "XxX-XXX-XXXX",
"requestld": "yyy-yyy-yyyy",
"request State": "conpl eted",
"statusMessage": "Success!",
"solutions": {

"pl acenent Sol utions": [

{
"resour ceMbdul eNane": "vGwxlnfra",
"servi ceResourceld": "some_resource_id",
"identifierType": "service_instance_id",
"identifier": "lac71fb8-ad43-4el6-9459-c3f372b8236d",
"assignnentlnfo": [
{ "key": "cloudOmner", "value": "amazon" },
{ "key": "vnfHostNane", "value": "ahr344gh" },
{ "key": "isRehone", "value": "False" },
{ "key": "cloud_region_id", "value": "lac71fb8-ad43-4el6-9459-c3f372b8236d" }
]
}
{
"resour ceMbdul eNane": "vG',
"serviceResourceld": "some_resource_id",
"identifierType": "cloud_region_id",
“identifier": "2ac71f b8-ad43-4el6-9459- c3f 372b8236d",
"assignnentlnfo": [
{ "key": "cloudOmner", "value": "amazon" },
{ "key": "cloud_region_id", "value": "lac71fb8-ad43-4el6-9459-c3f372b8236d" }
]
}
I
"licenseSol utions": [
{
"resour ceMbdul eNane": "vGwxlnfra",
"servi ceResourcel d": "sonme_resource_id",

"entitlement Pool UUID': ["lac71fb8-ad43-4el6-9459-c3f 372b8236d", "834fc71f b8-ad43-4f h7-9459-
c3f 372b8236f "],
"licenseKeyG oupUUI D': ["lac71f b8-ad43-4el6-9459-c3f 372b8236d", "834fc71f b8-ad43-4f h7-9459-
c3f 372b8236f "],
"entitlenmentPool I nvariantUUl D': ["1lac71f b8-ad43-4el6-9459-c3f 372b8236d", "834fc71fb8-ad43-4f h7-9459-
c3f 372b8236f "],
"licenseKeyG oupl nvariantUUl D': ["1lac71f b8-ad43-4el6-9459-c3f 372b8236d", "834f c71fb8-ad43-4fh7-9459-
c3f 372b8236f "]
}
]
}
}

Test Planning for OOF Homing and Allocation Service (OOF-HAS)

All Functional Test Cases described here below will be automatized in the CSIT ONAP integration environment. OOF-HAS is a data driven component,
this means that test cases and related results have dependency on A&AI network database content. For this reason OOF-HAS Functional Test cases
divided in 2 groups according to OOF-HAS functionality definition status and dependency from A&AI: Test cases marked in Green are those that will be
delivered as first set of Functional Test cases as they have limited dependencies on A&AI data set, those marked in white will be scoped by ONAP Beijing
delivery final test steps where all components have better stability in the scope of Beijing release.

Note: for the moment we consider the whole OOF component as the contribution of 2 Docker Containers:

=z

N Z

wZ

az

oz

OSDF : handling “R” interface, which is invoked by SO

OOF-HAS: handling the internal “R™ interface, which in invoked by OSDF

Description

Name: Verify docker Containers
are up and running

Name: OOF-HAS Get root
Interface (R’).

Perform GET on root “/* url

Name: OOF-HAS Healthcheck
Interface (R’).
Perform healthcheck for OOF-

HAS using Healthcheck REST
API

Name: OOF-HAS Wrong Version
Interface (R’).

Perform sanity sending a plan with
wrong Version

Name: OOF-HAS Missing
Demand Section

Interface (R’).

Perform Sanity sending a plan
with missing Demand Section

Name: OOF-HAS Wrong
Constraint

Interface (R’).

Perform sanity sending a plan with
wrong Constraints

Pre-conditions

1. MUSIC (real ONAP) docker image is up and
running

2. OOF-HAS docker image is up and running

1. OOF-HAS docker image is up and running

1. OOF-HAS docker image is up and running
2. OOF-HAS configuration is performed

3. MUSIC (real ONAP) docker image is up and
running

4. Music is prepopulated with Healthcheck row

1. OOF-HAS docker image is up and running
2. OOF-HAS configuration is performed

3. MUSIC (real ONAP) docker image is up and
running

4. Music is prepopulated with Healthcheck row

1. OOF-HAS docker image is up and running
2. OOF-HAS configuration is performed

3. MUSIC (real ONAP) docker image is up and
running

4. Music is prepopulated with Healthcheck row

1. OOF-HAS docker image is up and running
2. OOF-HAS configuration is performed

3. MUSIC (real ONAP) docker image is up and
running

4. A&AI simulator docker image is up and running
and it is populated in such a way that OOF cache
can be built

Test Steps

Robot Framework is checking with
"docker ps" command that all
needed docker containers are up
and in execution

Robot Framework is sending a
REST call to OOF-HAS API —"/"

Method - GET

Endpoint: http://$(hostname):
8091/

Robot Framework is sending a
Rest Call to MUSIC to Inject a
Plan named "healthcheck"

Method - PUT

Endpoint: /MUSIC/rest/v2
/keyspaces/conductor/tables/plans
/rows?id=healthcheck

Robot Framework is sending a
REST call to OOF-HAS API —
healthcheck

Method - GET

Endpoint: http:/$(hostname):
8091/vl/plans/healthcheck

Robot Framework is sending a

REST call to OOF-HAS API —to
Post a Plan

Method - POST

Endpoint: http://$(hostname):8091
Ivl/plans

Robot Framework is sending a

REST call to OOF-HAS API —to
GET a final recommendations

Method - GET

Endpoint: http://$(hostname):8091
Iv1/plans/<planld>

Robot Framework is sending a

REST call to OOF-HAS API —to
Post a Plan

Method - POST

Endpoint: http://$(hostname):8091
Iv1/plans

Robot Framework is sending a

REST call to OOF-HAS API| —to
GET a final recommendations

Method - GET

Endpoint: http://$(hostname):8091
Iv1/plans/<planld>

Robot Framework is sending a

REST call to OOF-HAS API —to
Post a Plan

Method - POST

Endpoint: http://$(hostname):8091
I1/plans

Expected Results

N. 4 Docker Containers for music are Up and running
(music-db, music-zk, music-war, music-tomcat)

N.5 Docker Containers for OPTF-HAS are up and
running (cond-api, cond.solv, cond-cont, cond-data,
cond-resv)

OOF-HAS should respond with HTTP 200 and body
containing "true"

MUSIC should respond with HTTP 200

OOF-HAS should respond with HTTP 200 and body
containing "true"

OOF-HAS should respond with HTTP 201 and body
containing the plan acceptance (i.e. the plan is in
“template” status and a unique identifier <planid> is
returned)

OOF-HAS should respond with HTTP 200 and body
containing “the error reason”

OOF-HAS should respond with HTTP 201 and body
containing the plan acceptance (i.e. the plan is in
“template” status and a unique identifier <planid> is
returned)

OOF-HAS should respond with HTTP 200 and body
containing “the error reason”

OOF-HAS should respond with HTTP 201 and body
containing the plan acceptance (i.e. the plan is in
“template” status and a unique identifier <planid> is
returned)

St
at
us

ted

Im
pl

en
ted

Im
pl

en
ted

Im
pl

en
ted

Im
pl

en
ted

Im
pl

en
ted

Im
pl

en
ted

Im
pl

en
ted

Robot Framework is sending a OOF-HAS should respond with HTTP 200 and body Im
REST call to OOF-HAS API —to containing "the error reason" pl
GET a final recommendations e
m
Method - GET en
ted
Endpoint: http://$(hostname):8091
Iv1/plans/<planld>
N. Name: OOF-HAS Correct plan 1. OOF-HAS docker image is up and running Robot Framework is sending a OOF-HAS should respond with HTTP 201 and body Im
7 noresult REST call to OOF-HAS API —to containing the plan acceptance (i.e. the plan is in pl
2. OOF-HAS configuration is performed Post a Plan “template” status and a unique identifier <planid> is e
Interface (R’). returned) m
3. MUSIC (real ONAP) docker image is up and Method - POST en
Send a correct plan requiring running ted
Optimization request for a set of = 4. A&AI simulator docker image is up and running = Endpoint: http:/$(hostname):8091
Candidates and constraints that and it is populated in such a way that OOF cache /vl/plans
cannot be satisfied can be built and that a set of recommendations
can be returned
Robot Framework is sending a OOF-HAS should respond with HTTP 200 and body Im
REST call to OOF-HAS API —to containing NO recommendations (i.e. the plan is in pl
GET a final recommendations “not found” status and no resources are returned back) e
m
Method - GET en
ted
Endpoint: http://$(hostname):8091
Iv1/plans/<planld>
N. ' Name: Correct Plan with 1. OOF-HAS docker image is up and running Robot Framework is sending a OOF-HAS should respond with HTTP 201 and body Im
8 recommendations REST call to OOF-HAS API —to containing the plan acceptance (i.e. the plan is in pl
2. OOF-HAS configuration is performed Post a Plan “template” status and a unique identifier <planid> is e
Interface (R’). returned) m
3. MUSIC (real ONAP) docker image is up and Method - POST en
Send a plan requiring running ted
Optimization request for a set of 4. A&AI simulator docker image is up and running = Endpoint: http://$(hostname):8091
Candidates and it is populated in such a way that OOF cache /vl/plans
can be built and that a set of recommendations
can be returned Robot Framework is sending a OOF-HAS should respond with HTTP 200 and body Im
REST call to OOF-HAS API —to containing the plan recommendations (i.e. the plan is pl
GET a final recommendations in “done” status and a set of recommendations are e
returned to the caller) m
Method - GET en
ted

Endpoint: http://$(hostname):8091
Iv1/plans/<planld>

Appendix A: Overview of ONAP Testing Requirements

TODO

Appendix B: Overview of OOF Scope

TODO

Overview of OOF-OSDF Scope

General Description

The OOF-OSDF is meant to provide an environment for creating policy-driven optimization applications in a declarative manner easily. It also provides an
execution environment for these models to be interpreted and run. Additionally, it supports external, custom optimizers such as the HAS application by
providing various levels of functionality to the optimization applications. For example, the OSDF may fetch and translate policies for HAS, or it may fetch
policies and data for another application.

Technical Description for OOF-OSDF Functionality related to OOF-HAS
The OOF-OSDF is provides the following functionality to support OOF-HAS:

1. Provide an end point for SO to make homing requests

2. Ensure authentication and validate the incoming request payload based on a model (Python Schematics model based on the SO-OOF API)

3. Fetch policies relevant to the SO's request (e.g. based on specific use case such as VCPE) and ensure that the policies are valid (well formed and
contain required attributes)

. Send response to SO that the request is accepted and is in processing (or send an error response)

. Create a "template" (request payload) for OOF-HAS and submit the request to OOF-HAS

. Periodically poll OOF-HAS for request processing status and optimization solution (with a configurable timeout) and validate the response based
on a model (Python Schematics model)

7. Post the optimization solution to the call-back URL specified in the request from SO in the format defined by SO-OOF API (or send an error

response)

[

Overview of OOF-HAS Scope

General Description

TODO

Technical Description for OOF-HAS Functionality

TODO

Appendix C: Resources and Links

1. Notes on creating a CSIT test script: https://wiki.onap.org/display/DW/Creating+a+CSIT+Test

2. Policy Team's CSIT Functional Test Cases by Pamela Dragosh. The OOF-OSDF test cases are adapted from that page.

3. Slides on Platform Maturity Requirements for Beijing Release: https://wiki.onap.org/download/attachments/16002054/Platform%20Maturity%
20Level%20proposal%2013Dec2017v2.pdf?version=1&modificationDate=1513625784000&api=v2

4. Current Individual Project Commitment for supporting Platform Maturity Requirements for Beijing Release:
https://wiki.onap.org/display/DW/Beijing+Release+Platform+Maturity

5. ONAP 4 level CI/CD architecture: Integration (5/11/2017)

https://wiki.onap.org/display/DW/Creating+a+CSIT+Test
https://wiki.onap.org/display/DW/Policy+R2+Beijing+CSIT+Functional+Test+Cases
https://wiki.onap.org/display/~pdragosh
https://wiki.onap.org/download/attachments/16002054/Platform%20Maturity%20Level%20proposal%2013Dec2017v2.pdf?version=1&modificationDate=1513625784000&api=v2
https://wiki.onap.org/download/attachments/16002054/Platform%20Maturity%20Level%20proposal%2013Dec2017v2.pdf?version=1&modificationDate=1513625784000&api=v2
https://wiki.onap.org/display/DW/Beijing+Release+Platform+Maturity
https://wiki.onap.org/pages/viewpage.action?pageId=4718718

	OOF Beijing (R2) Functional Testing planning

