
1.

a.

2.

a.
b.
c.

3.
a.

b.
4.

a.
b.
c.
d.

5.
a.
b.
c.
d.

OOF Beijing (R2) Functional Testing planning
Table of Contents

Test Planning for OOF Optimization Service Design Framework (OOF-OSDF)
Abbreviations Used
OOF-OSDF Beijing Release CSIT Functional Test Cases
Example Request/Response Payloads for OOF-OSDF Functional Test Cases

Test Planning for OOF Homing and Allocation Service (OOF-HAS)
Appendix A: Overview of ONAP Testing Requirements
Appendix B: Overview of OOF Scope

Overview of OOF-OSDF Scope
General Description
Technical Description for OOF-OSDF Functionality related to OOF-HAS

Overview of OOF-HAS Scope
General Description
Technical Description for OOF-HAS Functionality

Appendix C: Resources and Links

Test Planning for OOF Optimization Service Design Framework (OOF-OSDF)

The test structure here has been adapted from created by Policy Team's CSIT Functional Test Cases Pamela Dragosh

Abbreviations Used

The following abbreviations are used in the functional test case description below since there may be substantial repetition along with clarification notes
associated with some terms:

Abbreviations:

CHECK-REQ-OR-OPTIONAL

Check if the test is required or optional. For instance, health checks for dependencies is likely optional because this will be captured in
the tests for request/response

EMULATORS-OR-SERVICES-ARE-UP

Emulator or service should be up and running
Emulator or service configuration file should be available and loaded
Notes: For OOF internal components (e.g. OOF-OSDF connecting to OOF-HAS API), real services may be used when convenient

HTTP-200-TRUE
Component (or all components) should return health status as (HTTP response code of 200, response content containing the “true”
string "true")
Notes: (a) Verify whether the external components also have standardized on "true" as the value

SIMPLE-GET-HEALTH-CHECK-API
API: healthcheck
HTTP Request Method: GET
HTTP Endpoint: http://<host>:<port>/healthcheck
Notes: (a) check whether https can/should be used, and whether mutual TLS is required when using OOM/K8S, and
(b) verify if the health check is required for dependencies (it will help in quickly debugging but will add extra logic in our testing)

SIMPLE-GET-POST-TO-EMULATORS-OR-SERVICES
API: specific to each component
Endpoint: http://<host>:<port>/<specific-API>
Method - POST in most cases; GET in some cases

:Notes (a) check whether https can/should be used, and whether mutual TLS is required when using OOM/K8S

OOF-OSDF Beijing Release CSIT Functional Test Cases

Id Description Pre-conditions Test Steps Expected Results

A: OOF-OSDF Health Checks for Components and Dependencies (Policy and OOF-HAS API)

A.
1

Perform health check for the OOF-OSDF components using Health Check
API

 OSDF Manager

[OSDF Manager]
EMULATORS-OR-
SERVICES-ARE-UP

Server and
authentication details
should be configured
at $OOF_HOME
/config/feature-
healthcheck.
properties

SIMPLE-GET-HEALTH-CHECK-API HTTP-200-TRUE

https://wiki.onap.org/display/DW/Policy+R2+Beijing+CSIT+Functional+Test+Cases
https://wiki.onap.org/display/~pdragosh

A.
2

 CHECK-REQ-OR-OPTIONAL
Perform health check for the following external components and OOF
components using Health Check API:

Policy (external component)
OOF-HAS API (OOF component)

[Policy Emulator]
[OOF-HAS API –
container or
emulator] EMULATO
RS-OR-SERVICES-
ARE-UP

SIMPLE-GET-HEALTH-CHECK-API HTTP-200-TRUE

NOTE: Per comment and discussion
with Ramki, removing this cell

TODO: Retain this cell till
 and then remove it.19 Feb 2018

B: Fetch Data from Emulators (valid and invalid data, via GET and POST)

B.
1

Retrieve response corresponding to "valid request" from HAS-API emulator

OSDF HAS (POST data)

[OOF-HAS API –
container or emulator]
EMULATORS-OR-
SERVICES-ARE-UP

SIMPLE-GET-POST-TO-EMULATORS-
OR-SERVICES

TODO: Payload for OSDF-HAS request
(based on SO-OOF/HAS Request
Example below in section on payloads; An

 to add the payload; kitkumar Patel Shankar
 to anarayanan Puzhavakath Narayanan

review)

TODO: Endpoint and ports

Should receive a "request accepted"
type response, following which we
query status and the status should be
a valid one (translating, translated,
solving, solved, solution not found,
etc.)

B.
2

Retrieve response corresponding to "valid policy query" from Policy emulator

OSDF Policy (POST query data)

[Policy]
EMULATORS-OR-
SERVICES-ARE-UP

SIMPLE-GET-POST-TO-EMULATORS-
OR-SERVICES

TODO: Payloads and Endpoint

Should receive response for valid
policy query

TODO: Payloads

B.
3

 CHECK-REQ-OR-OPTIONAL
OSDF Policy (bad result)
OSDF HAS (GET; bad status)

Moved to another cell
OSDF HAS (GET; solution found)

[Policy Emulator]
[OOF-HAS API –
container or
emulator] EMULATO
RS-OR-SERVICES-
ARE-UP

SIMPLE-GET-POST-TO-EMULATORS-
OR-SERVICES

TODO: Payloads and Endpoint

Should receive corresponding
responses

TODO: Payloads

NOTE: Per comment and discussion
with Ramki, removed tests for
"malformed" requests (open to
adding them later on as needed).
Moved the remaining one to a
separate cell.

TODO: Retain this cell till
19 Feb 2018 and then remove it.

B.
4

Retrieve response corresponding to a decision from Conductor (i.e. "done"
with either a solution found or no solution found):

OSDF HAS (GET; solution found OR no solution found).

Since we cannot guarantee whether a solution can be found (it is
dependendent on dynamic state of the cloud instance), it may be better to
merge it to a "solution found OR no solution found" – i.e. Conductor is done
processing and gave a decision

[Policy Emulator]
[OOF-HAS API –
container or
emulator] EMULATO
RS-OR-SERVICES-
ARE-UP

SIMPLE-GET-POST-TO-EMULATORS-
OR-SERVICES

TODO: Payloads and Endpoint

TODO: Check format of response
and valid status messages

C: Run Complete Requests for Different Applications

C.
1

SO OSDF HAS (well formatted request) [Policy Emulator]
[OOF-HAS API –
container or
emulator] EMULATO
RS-OR-SERVICES-
ARE-UP

SIMPLE-GET-POST-TO-EMULATORS-
OR-SERVICES

TODO: Payloads, Endpoint, and Call-Back
URL

Should receive a valid Conductor
reponse

TODO: Payloads

C.
2

CHECK-REQ-OR-OPTIONAL
SO OSDF HAS (mal-formatted request or a data error so that the request
goes through OSDF but fails at Conductor)

[Policy Emulator]
[OOF-HAS API –
container or
emulator] EMULATO
RS-OR-SERVICES-
ARE-UP

SIMPLE-GET-POST-TO-EMULATORS-
OR-SERVICES

TODO: Payloads, Endpoint, and Call-Back
URL

Should receive a RequestError or an
error from Conductor

TODO: Payloads

NOTE: Per comment and discussion
with Ramki, removing this cell

TODO: Retain this cell till
 and then remove it.19 Feb 2018

C.
3

SO OSDF HAS OSDF Call Back URL

A valid request sent from SO to OSDF, which results in a valid template sent
from OSDF to HAS. OSDF will then poll HAS till a decision is made (i.e.
"done" with either a solution found or no solution found; it is probably difficult
to ensure a solution is guaranteed – it is great if a solution is found, and it is
OK for testing purposes even if there if no solution in some cases)

[Policy Emulator]
[OOF-HAS API –
container or
emulator] [SO-OOF-
OSDF call-back
receiver]

EMULATORS-OR-
SERVICES-ARE-UP

[Policy Emulator]
[OOF-HAS API – container or emulator] E
MULATORS-OR-SERVICES-ARE-UP

Should receive a "done" type
Conductor reponse (either successful
in finding a solution or failed to find a
solution, but Conductor made a
decision either way)

TODO: Payloads

Example Request/Response Payloads for OOF-OSDF Functional Test Cases

SO-OOF/HAS Request Example

{
 "requestInfo": {
 "transactionId": "xxx-xxx-xxxx",
 "requestId": "yyy-yyy-yyyy",

https://wiki.onap.org/display/~ankit7453
https://wiki.onap.org/display/~ankit7453
https://wiki.onap.org/display/~snarayanan
https://wiki.onap.org/display/~snarayanan

 "callbackUrl": "https://so:5000/callbackUrl",
 "sourceId": "SO",
 "requestType": "create",
 "numSolutions": 1,
 "optimizers": ["placement"],
 "timeout": 600
 },
 "requestParameters": { "customerLatitude": 32.89748, "customerLongitude": -97.040443, "customerName": "xyz" },
 "placementDemands": [
 {
 "resourceModuleName": "vGMuxInfra",
 "serviceResourceId": "vGMuxInfra-xx",
 "tenantId": "vGMuxInfra-tenant",
 "resourceModelInfo": {
 "modelInvariantId": "vGMuxInfra-modelInvariantId",
 "modelVersionId": "vGMuxInfra-versionId",
 "modelName": "vGMuxInfra-model",
 "modelType": "resource",
 "modelVersion": "1.0",
 "modelCustomizationName": "vGMuxInfra-customeModelName"
 },
 "existingCandidates": { "identifierType": "service_instance_id", "identifiers": ["87257b49-9602-4ca1-9817-
094e52bc873b"] },
 "excludedCandidates": { "identifierType": "service_instance_id", "identifiers": ["1ac71fb8-ad43-4e16-9459-
c3f372b8236d"] },
 "requiredCandidates": { "identifierType": "service_instance_id", "identifiers": ["7e6c3e57-62cd-44f6-aa88-
d0896998f7ec"] }
 },
 {
 "resourceModuleName": "vG",
 "serviceResourceId": "71d563e8-e714-4393-8f99-cc480144a05e",
 "tenantId": "vG-tenant",
 "resourceModelInfo": {
 "modelInvariantId": "vG-modelInvariantId",
 "modelVersionId": "vG-versionId",
 "modelName": "vG-model",
 "modelType": "resource",
 "modelVersion": "1.0",
 "modelCustomizationName": "vG-customeModelName"
 },
 "existingCandidates": { "identifierType": "service_instance_id", "identifiers": ["21d5f3e8-e714-4383-8f99-
cc480144505a"] },
 "excludedCandidates": { "identifierType": "service_instance_id", "identifiers": ["1ac71fb8-ad43-4e16-9459-
c3f372b8236d"] },
 "requiredCandidates": { "identifierType": "cloud_region_id", "identifiers": ["TXAUS219"] }
 }
],
 "serviceInfo": {
 "serviceInstanceId": "d61b2543-5914-4b8f-8e81-81e38575b8ec",
 "serviceModelInfo": {
 "modelInvariantId": "vCPE-invariantId",
 "modelVersionId": "vCPE-versionId",
 "modelName": "vCPE-model",
 "modelType": "service",
 "modelVersion": "1.0",
 "modelCustomizationName": "vCPE-customeModelName"
 }
 },
 "licenseDemands": [
 {
 "resourceModuleName": "vGMuxInfra",
 "serviceResourceId": "vGMuxInfra-xx",
 "tenantId": "vGMuxInfra-tenant",
 "resourceModelInfo": {
 "modelInvariantId": "vGMuxInfra-modelInvariantId",
 "modelVersionId": "vGMuxInfra-versionId",
 "modelName": "vGMuxInfra-model",
 "modelType": "resource",
 "modelVersion": "1.0",
 "modelCustomizationName": "vGMuxInfra-customeModelName"
 },

 "existingLicenses": {
 "entitlementPoolUUID": ["87257b49-9602-4ca1-9817-094e52bc873b", "43257b49-9602-4fe5-9337-094e52bc9435"],
 "licenseKeyGroupUUID": ["87257b49-9602-4ca1-9817-094e52bc873b", "43257b49-9602-4fe5-9337-094e52bc9435"]
 }
 }
]
}

SO-OOF/HAS Response Example

{
 "transactionId": "xxx-xxx-xxxx",
 "requestId": "yyy-yyy-yyyy",
 "requestState": "completed",
 "statusMessage": "Success!",
 "solutions": {
 "placementSolutions": [
 {
 "resourceModuleName": "vGMuxInfra",
 "serviceResourceId": "some_resource_id",
 "identifierType": "service_instance_id",
 "identifier": "1ac71fb8-ad43-4e16-9459-c3f372b8236d",
 "assignmentInfo": [
 { "key": "cloudOwner", "value": "amazon" },
 { "key": "vnfHostName", "value": "ahr344gh" },
 { "key": "isRehome", "value": "False" },
 { "key": "cloud_region_id", "value": "1ac71fb8-ad43-4e16-9459-c3f372b8236d" }
]
 },
 {
 "resourceModuleName": "vG",
 "serviceResourceId": "some_resource_id",
 "identifierType": "cloud_region_id",
 "identifier": "2ac71fb8-ad43-4e16-9459-c3f372b8236d",
 "assignmentInfo": [
 { "key": "cloudOwner", "value": "amazon" },
 { "key": "cloud_region_id", "value": "1ac71fb8-ad43-4e16-9459-c3f372b8236d" }
]
 }
],
 "licenseSolutions": [
 {
 "resourceModuleName": "vGMuxInfra",
 "serviceResourceId": "some_resource_id",
 "entitlementPoolUUID": ["1ac71fb8-ad43-4e16-9459-c3f372b8236d", "834fc71fb8-ad43-4fh7-9459-
c3f372b8236f"],
 "licenseKeyGroupUUID": ["1ac71fb8-ad43-4e16-9459-c3f372b8236d", "834fc71fb8-ad43-4fh7-9459-
c3f372b8236f"],
 "entitlementPoolInvariantUUID": ["1ac71fb8-ad43-4e16-9459-c3f372b8236d", "834fc71fb8-ad43-4fh7-9459-
c3f372b8236f"],
 "licenseKeyGroupInvariantUUID": ["1ac71fb8-ad43-4e16-9459-c3f372b8236d", "834fc71fb8-ad43-4fh7-9459-
c3f372b8236f"]
 }
]
 }
}

Test Planning for OOF Homing and Allocation Service (OOF-HAS)

All Functional Test Cases described here below will be automatized in the CSIT ONAP integration environment. OOF-HAS is a data driven component,
this means that test cases and related results have dependency on A&AI network database content. For this reason OOF-HAS Functional Test cases
divided in 2 groups according to OOF-HAS functionality definition status and dependency from A&AI: Test cases marked in Green are those that will be
delivered as first set of Functional Test cases as they have limited dependencies on A&AI data set, those marked in white will be scoped by ONAP Beijing
delivery final test steps where all components have better stability in the scope of Beijing release.

Note: for the moment we consider the whole OOF component as the contribution of 2 Docker Containers:

- OSDF : handling “R” interface, which is invoked by SO

- OOF-HAS: handling the internal “R’” interface, which in invoked by OSDF

Id Description Pre-conditions Test Steps Expected Results St
at
us

N.
1

Name: Verify docker Containers
are up and running

1. MUSIC (real ONAP) docker image is up and
running

2. OOF-HAS docker image is up and running

Robot Framework is checking with
"docker ps" command that all
needed docker containers are up
and in execution

N. 4 Docker Containers for music are Up and running
(music-db, music-zk, music-war, music-tomcat)

N.5 Docker Containers for OPTF-HAS are up and
running (cond-api, cond.solv, cond-cont, cond-data,
cond-resv)

Im
pl
e
m
en
ted

N.
2

Name: OOF-HAS Get root

Interface (R’).

Perform GET on root "/" url

1. OOF-HAS docker image is up and running Robot Framework is sending a
REST call to OOF-HAS API – "/"

Method - GET

Endpoint: http://$(hostname):
8091/

OOF-HAS should respond with HTTP 200 and body
containing "true"

Im
pl
e
m
en
ted

N.
3

Name: OOF-HAS Healthcheck

Interface (R’).

Perform healthcheck for OOF-
HAS using REST Healthcheck
API

1. OOF-HAS docker image is up and running

2. OOF-HAS configuration is performed

3. MUSIC (real ONAP) docker image is up and
running

4. Music is prepopulated with Healthcheck row

Robot Framework is sending a
Rest Call to MUSIC to Inject a
Plan named "healthcheck"

Method - PUT

Endpoint: /MUSIC/rest/v2
/keyspaces/conductor/tables/plans
/rows?id=healthcheck

MUSIC should respond with HTTP 200 Im
pl
e
m
en
ted

Robot Framework is sending a
REST call to OOF-HAS API –
healthcheck

Method - GET

Endpoint: http://$(hostname):
8091/v1/plans/healthcheck

OOF-HAS should respond with HTTP 200 and body
containing "true"

Im
pl
e
m
en
ted

N.
4

Name: OOF-HAS Wrong Version

Interface (R’).

Perform sanity sending a plan with
wrong Version

1. OOF-HAS docker image is up and running

2. OOF-HAS configuration is performed

3. MUSIC (real ONAP) docker image is up and
running

4. Music is prepopulated with Healthcheck row

Robot Framework is sending a
REST call to OOF-HAS API – to
Post a Plan

Method - POST

Endpoint: http://$(hostname):8091
/v1/plans

OOF-HAS should respond with HTTP 201 and body
containing the plan acceptance (i.e. the plan is in
“template” status and a unique identifier <planid> is
returned)

Im
pl
e
m
en
ted

Robot Framework is sending a
REST call to OOF-HAS API – to
GET a final recommendations

Method - GET

Endpoint: http://$(hostname):8091
/v1/plans/<planId>

OOF-HAS should respond with HTTP 200 and body
containing "the error reason"

Im
pl
e
m
en
ted

N.
5

Name: OOF-HAS Missing
Demand Section

Interface (R’).

Perform Sanity sending a plan
with missing Demand Section

1. OOF-HAS docker image is up and running

2. OOF-HAS configuration is performed

3. MUSIC (real ONAP) docker image is up and
running

4. Music is prepopulated with Healthcheck row

Robot Framework is sending a
REST call to OOF-HAS API – to
Post a Plan

Method - POST

Endpoint: http://$(hostname):8091
/v1/plans

OOF-HAS should respond with HTTP 201 and body
containing the plan acceptance (i.e. the plan is in
“template” status and a unique identifier <planid> is
returned)

Im
pl
e
m
en
ted

Robot Framework is sending a
REST call to OOF-HAS API – to
GET a final recommendations

Method - GET

Endpoint: http://$(hostname):8091
/v1/plans/<planId>

OOF-HAS should respond with HTTP 200 and body
containing "the error reason"

Im
pl
e
m
en
ted

N.
6

Name: OOF-HAS Wrong
Constraint

Interface (R’).

Perform sanity sending a plan with
wrong Constraints

1. OOF-HAS docker image is up and running

2. OOF-HAS configuration is performed

3. MUSIC (real ONAP) docker image is up and
running
4. A&AI simulator docker image is up and running
and it is populated in such a way that OOF cache
can be built

Robot Framework is sending a
REST call to OOF-HAS API – to
Post a Plan

Method - POST

Endpoint: http://$(hostname):8091
/v1/plans

OOF-HAS should respond with HTTP 201 and body
containing the plan acceptance (i.e. the plan is in
“template” status and a unique identifier <planid> is
returned)

Im
pl
e
m
en
ted

1.
2.
3.

4.
5.
6.

7.

Robot Framework is sending a
REST call to OOF-HAS API – to
GET a final recommendations

Method - GET

Endpoint: http://$(hostname):8091
/v1/plans/<planId>

OOF-HAS should respond with HTTP 200 and body
containing "the error reason"

Im
pl
e
m
en
ted

N.
7

Name: OOF-HAS Correct plan
no result

Interface (R’).

Send a correct plan requiring
for a set of Optimization request

Candidates and constraints that
cannot be satisfied

1. OOF-HAS docker image is up and running

2. OOF-HAS configuration is performed

3. MUSIC (real ONAP) docker image is up and
running
4. A&AI simulator docker image is up and running
and it is populated in such a way that OOF cache
can be built and that a set of recommendations
can be returned

Robot Framework is sending a
REST call to OOF-HAS API – to
Post a Plan

Method - POST

Endpoint: http://$(hostname):8091
/v1/plans

OOF-HAS should respond with HTTP 201 and body
containing the plan acceptance (i.e. the plan is in
“template” status and a unique identifier <planid> is
returned)

Im
pl
e
m
en
ted

Robot Framework is sending a
REST call to OOF-HAS API – to
GET a final recommendations

Method - GET

Endpoint: http://$(hostname):8091
/v1/plans/<planId>

OOF-HAS should respond with HTTP 200 and body
containing NO recommendations (i.e. the plan is in
“not found” status and no resources are returned back)

Im
pl
e
m
en
ted

N.
8

Name: Correct Plan with
recommendations

Interface (R’).

Send a plan requiring
for a set of Optimization request

Candidates

1. OOF-HAS docker image is up and running

2. OOF-HAS configuration is performed

3. MUSIC (real ONAP) docker image is up and
running
4. A&AI simulator docker image is up and running
and it is populated in such a way that OOF cache
can be built and that a set of recommendations
can be returned

Robot Framework is sending a
REST call to OOF-HAS API – to
Post a Plan

Method - POST

Endpoint: http://$(hostname):8091
/v1/plans

OOF-HAS should respond with HTTP 201 and body
containing the plan acceptance (i.e. the plan is in
“template” status and a unique identifier <planid> is
returned)

Im
pl
e
m
en
ted

Robot Framework is sending a
REST call to OOF-HAS API – to
GET a final recommendations

Method - GET

Endpoint: http://$(hostname):8091
/v1/plans/<planId>

OOF-HAS should respond with HTTP 200 and body
containing the plan recommendations (i.e. the plan is
in “done” status and a set of recommendations are
returned to the caller)

Im
pl
e
m
en
ted

Appendix A: Overview of ONAP Testing Requirements

TODO

Appendix B: Overview of OOF Scope

TODO

Overview of OOF-OSDF Scope

General Description

The OOF-OSDF is meant to provide an environment for creating policy-driven optimization applications in a declarative manner easily. It also provides an
execution environment for these models to be interpreted and run. Additionally, it supports external, custom optimizers such as the HAS application by
providing various levels of functionality to the optimization applications. For example, the OSDF may fetch and translate policies for HAS, or it may fetch
policies and data for another application.

Technical Description for OOF-OSDF Functionality related to OOF-HAS

The OOF-OSDF is provides the following functionality to support OOF-HAS:

Provide an end point for SO to make homing requests
Ensure authentication and validate the incoming request payload based on a model (Python Schematics model based on the SO-OOF API)
Fetch policies relevant to the SO's request (e.g. based on specific use case such as vCPE) and ensure that the policies are valid (well formed and
contain required attributes)
Send response to SO that the request is accepted and is in processing (or send an error response)
Create a "template" (request payload) for OOF-HAS and submit the request to OOF-HAS
Periodically poll OOF-HAS for request processing status and optimization solution (with a configurable timeout) and validate the response based
on a model (Python Schematics model)
Post the optimization solution to the call-back URL specified in the request from SO in the format defined by SO-OOF API (or send an error
response)

Overview of OOF-HAS Scope

1.
2.
3.

4.

5.

General Description

TODO

Technical Description for OOF-HAS Functionality

TODO

Appendix C: Resources and Links

Notes on creating a CSIT test script: https://wiki.onap.org/display/DW/Creating+a+CSIT+Test
Policy Team's CSIT Functional Test Cases by . The OOF-OSDF test cases are adapted from that page.Pamela Dragosh
Slides on Platform Maturity Requirements for Beijing Release: https://wiki.onap.org/download/attachments/16002054/Platform%20Maturity%
20Level%20proposal%2013Dec2017v2.pdf?version=1&modificationDate=1513625784000&api=v2
Current Individual Project Commitment for supporting Platform Maturity Requirements for Beijing Release:
https://wiki.onap.org/display/DW/Beijing+Release+Platform+Maturity
ONAP 4 level CI/CD architecture: Integration (5/11/2017)

https://wiki.onap.org/display/DW/Creating+a+CSIT+Test
https://wiki.onap.org/display/DW/Policy+R2+Beijing+CSIT+Functional+Test+Cases
https://wiki.onap.org/display/~pdragosh
https://wiki.onap.org/download/attachments/16002054/Platform%20Maturity%20Level%20proposal%2013Dec2017v2.pdf?version=1&modificationDate=1513625784000&api=v2
https://wiki.onap.org/download/attachments/16002054/Platform%20Maturity%20Level%20proposal%2013Dec2017v2.pdf?version=1&modificationDate=1513625784000&api=v2
https://wiki.onap.org/display/DW/Beijing+Release+Platform+Maturity
https://wiki.onap.org/pages/viewpage.action?pageId=4718718

	OOF Beijing (R2) Functional Testing planning

