
Pluggable Security

7. Pluggable User-level Authentication and Authorisation

Status: Draft

7. Pluggable User-level Authentication and Authorisation
Status: Draft
7.1 Background and Goals:
7.2 Context
7.2.1 Proposal Summary
7.2.2 SideCar implementation

7.3 History
7.4 Supported Interaction Patterns

7.4.1 CADI/AAF Authentication and Authorisation
Flow summary:
7.4.2 CADI/3rd Party Authentication and Authorisation Provider
Flow summary:
7.4.4 Authentication and Authorisation from Cached Result
Flow summary:
7.4.3 Token Propagation between microservices
7.4.5 Programmatic Authorisation check

7.5 Configuration
7.6 Identified Work Items
7.7 Impacts of Pluggable Security (WIP):

To ONAP clients (internal or external):
To ONAP Services:
7.7.1 Impacts of Pluggable Security (Side car approach)

7.8 Open Issues
7.9 Next Steps
7.10 Identified and supported patterns and features

7.1 Background and Goals:

ONAP must be deployed in different service provider environments in order to be successful. We know that different service providers have 
requirements for different authentication and authorisation security infrastructures. Additionally while many use cases can be satisfied by component-
to-component authentication and authorisation (e.g. orchestration activities) others need the identity and authority of the originating user (e.g. retrieval 
of data from a source with object level access control). To meet these requirements we need a security framework that is  . pluggable

Since ONAP is a micro services architecture we must also address the standard requirements to localize the burdens of   and configuration patching. 

Goal 1: Alternative Authentication and Authorisation security providers can be integrated without requiring customisation of the underlying 
ONAP code.

: Align with the existing AAF project, so as to promote re-use and to avoid duplication/fragmentation of the security architecture.Goal 2
Goal 3: Minimise the operational effort required to configure and patch microservices.
Goal 4: Provide a solution that minimises the development impact on microservices written in Clojure, Python etc as well as Java

 Support human and non-person entities interacting with the ONAP applications at run-time.Goal 5:



1.  
2.  

3.  

a.  
b.  
c.  
d.  

1.  
2.  

1.  

2.  

a.  

b.  

c.  

d.  
e.  

3.  
a.  
b.  

c.  

d.  

4.  

Since CADI/AAF is our open-sourced Authorisation provider, we propose to build a reference implementation of pluggable authentication and 
authorisation based upon it.

:Terminology

Subject - An entity requesting to perform an operation upon the object. The subject is sometimes referred to as a requestor. The subject may 
be a human or a non-person entity.

User - Any subject that interacts with a system.

Non-person entity - A subject that is not a human.

Role - 1. A business responsibility that an employee or contractor fulfills.

          2. A level of privilege assigned within a resource.

          3. A defined set of user accounts for a job function.

7.2 Context

 This proposal relies upon the ONAP Credential Management and 
ONAP Communication Security initiatives to provide:

Secure certificate generation and distribution.
Component->component trust through mutual end point 
authentication.
TLS communications resistant to:

Spoofing
Replay attacks
Man-in-the-middle attacks
Token theft.

This proposal relies upon the Service Provider's security infrastructure 
(Authorisation and Authentication) to provide:

User administration.
Permissions and role management support

TO DO - insert general security arch diag

7.2.1 Proposal Summary

Overview

An upstream user or application invokes a REST endpoint on 
ONAP microservice (MS1) supplying one or more credentials 
or tokens (e.g. X509 cert, OAUTH2 token, SAML token, basic 
auth).
The request is intercepted by the CADI filter whose 
responsibilities include:

extracting the required tokens/credentials from the 
request - configuration point 1
invoking the correct authentication and authorisation 
providers to validate the supplied tokens and to 
discover their authorisations - configuration point 2 (Se
e section 7.4.1 and 7.4.2)
optionally caching the result of the authentication and 
authorisation steps above to optimise performance - co
nfiguration point 3 (see 7.4.4)
rejecting requests with invalid credentials
injecting the retrieved authorisation token(s) into a 
well-known place in the request (for further inspection 
by the authorisation filter).

The request is intercepted by the Authorisation Filter that:
extracts the authorisation tokens from the request
tests that the tokens have not been tampered with or 
expired
compares the authorisations provided with those 
required to access the REST endpoint - configuration 

.point 4
rejects requests that do not meet the authorisation 
criteria



4.  

a.  

b.  

1.  

2.  

3.  
4.  

5.  

6.  

7.  
8.  

a.  

b.  

9.  

The request is passed to the application that performs business 
logic.

The application logic may   programmatically optionally
query the authorisations associated with the request 
identity/identities (say to decide which menu options 
to present when serving a UI) See section 7.4.5.
The application logic may   invoke REST optionally
requests on one or more microservices to perform its 
business. If it does so, it   use the provided REST must
client to ensure that the provided credentials/tokens 
are propagated correctly and securely. These tokens 
are not directly available to the application developer 
(see section 7.4.3)

Each subsequent microservice in the transaction performs the same 
sequence of operations.

7.2.2 SideCar implementation

In this implementation, we use the same security components outlined 
above, but externalised in a sidecar (K8S impl described):

An upstream user or application invokes a REST endpoint on 
ONAP microservice (MS1) supplying one or more credentials 
or tokens (e.g. X509 cert, OAUTH2 token, SAML token, basic 
auth).
The request arrives at the exposed ingress port of the K8s 
POD.
The port forwards the request to the reverse-proxy service.
The request is intercepted by the CADI filter as described in 
section 7.2.1
The request is intercepted by the Authorisation Filter as 
described in section 7.2.1
If the request is admitted the reverse proxy populates forward 
proxy tranasction (TX) cache with credentials (note if no TX on 
request, the reverse-proxy generates and appends to the 
request)
The admitted request is forwarded to primary service
If primary service makes o/b http requests these are forwarded 
to the forward proxy service via ip-tables.

The forward proxy retrieves any credentials 
associated with the transaction and appends to the 
outgoing request
If the TX is not in cache (e.g. request originates from 
primary MS on startup) only the primary client cert is 
available.

FUTURE - the forward proxy can offer a service (to the primary 
MS) that allows it to discover the authorisations associated with 
the transaction (similar to the 'is-user-in-role type function).

Each subsequent microservice in the transaction performs the same 
sequence of operations.

7.3 History

History of this proposal can be referenced here - Pluggable Security - history archive

7.4 Supported Interaction Patterns

7.4.1 CADI/AAF Authentication and 
Authorisation

Flow summary:

1.REST request arrives containing token(s) (or x509 cert subject)
2.CADI filter intercepts request and retrieves token:

1.If protocol/token type is configured for caching, CADI checks for 
match in cache

a. No match – validates token with supported 
authentication provider.
b. validation result is cached.
c. If token is not valid, request is rejected.

2.Retrieves authorisations from AAF

a. Caches result

https://wiki.onap.org/display/DW/Pluggable+Security+-+history+archive


1.  

1.  

1.  
2.  

a.  
b.  
c.  
d.  
e.  

3.  
a.  

b.  

– add libr

3. Authorisation filter performs admit/reject via authorisation policy:

1.The filter compares the authorisations retrieved by CADI with 
the configured requirements for the invoked method/URI pattern.

2. If the authorisations are satisfied, the filter admits the request. 
Otherwise the request is rejected with a 403.

7.4.2 CADI/3rd Party Authentication and 
Authorisation Provider

Flow summary:

 
1. REST request arrives containing token (or x509 cert subject)
2. CADI Filter is configured to extract tokens from one or more locations 
– e.g. headers, X509 cert subject

If protocol/token type is configured for caching, CADI checks 
for match in cache

a. No match – CADI is configured to forward tokens to 
external security microservice with AUTH* interface.
b. Security Microservice implementation validates token 
with Authentication Provider
c. Security Microservice implementation retrieves 
authorisations from Authorisation Provider
d. Security microservice returns authorisations in standard 
format

2. CADI Filter caches result

3. Authorisation filter performs admit/reject via authorisation policy:

The filter compares the authorisations retrieved by CADI with 
the configured requirements for the invoked method/URI 
pattern.

2. If the authorisations are satisfied, the filter admits the request. 
Otherwise the request is rejected with a 403.

7.4.4 Authentication and Authorisation from 
Cached Result

Flow summary:

REST request arrives containing token (or x509 cert subject)
CADI Filter is configured to extract tokens from one or more 
locations – e.g. headers, X509 cert subject*

Checks for match in cache
Match found, identity is valid.
Checks for matching authorisations in cache
Match found
Authorisations added to request

Authorisation filter performs admit/reject via authorisation policy:
The filter compares the authorisations retrieved by 
CADI with the configured requirements for the invoked 
method/URI pattern.
If the authorisations are satisfied, the filter admits the 
request. Otherwise the request is rejected with a 403.



1.  
2.  

3.  
4.  

1.  
2.  
3.  

a.  
b.  

4.  
5.  
6.  
7.  
8.  

1.  

2.  

1.  
2.  
3.  

4.  

1.  
2.  
3.  
4.  

7.4.3 Token Propagation between microservices

7.4.5 Programmatic Authorisation check

WIP

Done - to write up.

7.5 Configuration

The per-microservice configuration of pluggable security includes (but is not limited to):

JSON based CADI configuration, specifying which tokens are to be retrieved from an incoming REST request and the paths to them.
CADI configuration of the LUR and TAF interfaces to be used for authentication and authorisation and their respective REST endpoints - 
typically common for all microservices.
Configuration of the CADI caching mechanism (in memory, disk store, cache ageing policy) and configuration of which token types to cache.
JSON based Authorisation Filter configuration specifying the URI patterns for the microservice and the authorisations required to access 
them.

7.6 Identified Work Items

Describe Token propagation between filters
Authorisation Filter configuration - alignment with CADI configuration conventions
CADI configuration extensions:

Describes what tokens/credentials to look for and where to find them in the REST request.
Configure TAF/LUR to call Auth* endpoint.

Generic Security Provider TAF/LUR implementation to support  use case.CADI/3rd Party Authentication and Authorisation Provider 
Sample Auth* implementation for reference/OOB.
Enhancements to support serviceservice token propagation.
Updated client impact statement.
Updated service impact statement.

7.7 Impacts of Pluggable Security (WIP):

To ONAP clients (internal or external):

(development) Need to integrate client with Authentication Provider to retrieve credential. Note - this could be abstracted via a call to 
Auth* configured with a re-direct if required?
(development) Client needs to provide tokenised credential in REST request.

To ONAP Services:

(development) Need to include the CADI and Authorisation Filters in their filter chains.
(deployment) Need to configure CADI client.
(deployment) Need to configure authorisation requirements per URI, per service. Note that this can be as fine or coarse as the 
service provider's project requires.
(development) All new or modified microservices need to use the secured REST client to invoke other microservices for seamless 
and secure propagation of identity and authorisations.

7.7.1 Impacts of Pluggable Security (Side car approach)

Impact on primary service developers

Configure CADI and Authorisation filters (authorisation enforcement point)
Complete Helm chart for microservice POD
Regression test primary m/s.
Remove any pre-existing authorisation point in the primary microservice code.



1.  

2.  
3.  

1.  
2.  
3.  

7.8 Open Issues

What happens in the case where there is an overlap between a protocol that CADI already supports and the generic Security Service config? 
How do we avoid conflicting/confusing configuration for the deployer (and the associated risk of leaving a gap/vulnerability)?
We need to agree on a common/preferred representation for the authorisation token(s).
Agree behaviour when no token is present/authentication fails - largely aligned.

7.9 Next Steps

Complete Use cases
Agree schedule/roadmap for work items (what can be done in Casablanca/after Casablanca)
Review/refine proposal with Seccom/TSC.

7.10 Identified and supported patterns and features

The table below describes patterns of behaviour that we have encountered whilst deploying the security sidecar with A&AI components. The table 
summarises the patterns and the status of support/testing.

Pattern
/Feature

Description Supported

DMAAP 
Integration

A 
Microservice 
needs to call 
out to DMAAP 
from within a 
sidecar-
enabled POD

Yes - Dublin

Database 
Integration

A 
Microservice 
needs to call 
out to a 
Database 
from within a 
sidecar-
enabled POD

Yes - Dublin

Application 
Credential 
propagation

Microservice 1 
to 
Microservice 2 
with 2 way 
TLS and 
application 
credential 
propagation. 
This is the 
archetypal use 
case for the 
side car.

Pod 
readiness 
probe

Kubernetes 
uses a 
readiness 
probe to 
check if an 
MS is up (say 
for 
dependency 
management). 
This can be 
implemented 
via an https 
GET request.

Yes - Dublin

Load 
balancer 
health 
check

Load balancer 
uses an HTTP 
poll to check if 
an MS is up

Yes - Dublin

Microservic
e has 
embedded 
authorisatio
n policy 
file.

When 
pluggable 
security is 
deployed, the 
subject in the 
client cert sent 
by rproxy to 
resources is 
used to check 
against the 

Yes - Dublin



permissions 
configured in 
the amended 
policy json file.

Spring 
security 
profile

3 profiles 
identified:

one-way-ssl

This uses one 
way ssl 
between the 
client and the 
target 
microservice 
and the 
authentication 
is Basic Auth.

aaf-auth 

In this mode, 
the 
microservice 
communicates 
with AAF for 
auth via an 
active 
embedded 
CADI.

two-way-ssl

In this mode, 
the 
microservice 
uses the CN 
in client cert to 
match against 
a security 
policy file (e.g. 
aai_policy.
json for 
authorization.

Yes - Dublin

Untested

Yes - Dublin


	Pluggable Security

