
OOF-HAS Homing Specification Guide
Apache License, Version 2.0

Copyright (C) 2017 AT&T Intellectual Property. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of
the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and
limitations under the License.

Homing Specification Guide
Updated: 27 Mar 2018

This document describes the Homing Template format, used by the Homing service. It is a work in progress and subject to frequent revision.

Template Structure

Homing templates are defined in YAML and follow the structure outlined below.

homing_template_version: 2018-02-01
parameters:
 PARAMETER_DICT
locations:
 LOCATION_DICT
demands:
 DEMAND_DICT
constraints:
 CONSTRAINT_DICT
reservations:
 RESERVATION_DICT
optimization:
 OPTIMIZATION

homing_template_version: This key with value 2016-11-01 (or a later date) indicates that the YAML document is a Homing template of the
specified version.
parameters: This section allows for specifying input parameters that have to be provided when instantiating the homing template. Typically, this
section is used for providing runtime parameters (like SLA thresholds), which in turn is used in the existing homing policies. The section is
optional and can be omitted when no input is required.
locations: This section contains the declaration of geographic locations. This section is optional and can be omitted when no input is required.
demands: This section contains the declaration of demands. This section with at least one demand should be defined in any Homing template, or
the template would not really do anything when being instantiated.
constraints: This section contains the declaration of constraints. The section is optional and can be omitted when no input is required.
reservations: This section contains the declaration of required reservations. This section is optional and can be omitted when reservations are
not required.
optimization: This section allows the declaration of an optimization. This section is optional and can be omitted when no input is required.

Homing Template Version

The value of tells HAS not only the format of the template but also features that will be validated and supported. The homing_template_version
following values are supported: "2016-11-01" or "2018-02-01" in the initial release of HAS.

homing_template_version: 2018-02-01

Parameters

The section allows for specifying input parameters that have to be provided when instantiating the template. Such parameters are typically parameters
used for providing runtime inputs (like SLA thresholds), which in turn is used in the existing homing policies. This also helps build reusable homing
constraints where these parameters can be embedded design time, and it corresponding values can be supplied during runtime.

Each parameter is specified with the name followed by its value. Values can be strings, lists, or dictionaries.

Example

In this example, is a string and is a dictionary containing both a string and a list (keyed by and ,provider_name service_info base_url nod_config
respectively).

parameters:
 provider_name: multicloud
 service_info:
 base_url: http://serviceprovider.sdngc.com/
 nod_config:
 - http://nod/config_a.yaml
 - http://nod/config_b.yaml
 - http://nod/config_c.yaml
 - http://nod/config_d.yaml

A parameter can be referenced in place of any value. See the section for more details.Intrinsic Functions

Locations

One or more may be declared. A location may be referenced by one or more . Locations may be defined in any of the following locations constraints
ways:

Coordinate

A geographic coordinate expressed as a latitude and longitude.

Key Value

latitude Latitude of the location.

longitude Longitude of the location.

| Key | Value | |-----------------------------|----------------------------| | | Latitude of the location. | | | Longitude of the location. |latitude longitude

Host Name

An opaque host name that can be translated to a coordinate via an inventory provider (e.g., A&AI).

Key Value

host_name Host name identifying a location.

| Key | Value | |-----------------------------|----------------------------| | | Host name identifying a location. |host_name

CLLI

Common Language Location Identification (CLLI) code(https://en.wikipedia.org/wiki/CLLI_code).

Key Value

clli_code 8 character CLLI.

| Key | Value | |-----------------------------|----------------------------| | | 8 character CLLI. |clli_code

Questions

Do we need functions that can convert one of these to the other? E.g., CLLI Codes to a latitude/longitude

Placemark

An address expressed in geographic region-agnostic terms (referred to as a).placemark

Support for this schema is deferred.

Key Value

iso_country_code The abbreviated country name associated with the placemark.

https://en.wikipedia.org/wiki/CLLI_code).

postal_code The postal code associated with the placemark.

administrative_area The state or province associated with the placemark.

sub_administrative_area Additional administrative area information for the placemark.

locality The city associated with the placemark.

sub_locality Additional city-level information for the placemark.

thoroughfare The street address associated with the placemark.

sub_thoroughfare Additional street-level information for the placemark.

| Key | Value | |-----------------------------|----------------------------| | | The abbreviated country name associated with the placemark. | | iso_country_code post
 | The postal code associated with the placemark. | | | The state or province associated with the placemark. | | al_code administrative_area sub_adm

 | Additional administrative area information for the placemark. | | | The city associated with the placemark. | | inistrative_area locality sub_local
 | Additional city-level information for the placemark. | | | The street address associated with the placemark. | | | ity thoroughfare sub_thoroughfare

Additional street-level information for the placemark. |

Questions

What geocoder can we use to convert placemarks to a latitude/longitude?

Examples

The following examples illustrate a location expressed in coordinate, host_name, CLLI, and placemark, respectively.

locations:
 location_using_coordinates:
 latitude: 32.897480
 longitude: -97.040443

 host_location_using_host_name:
 host_name: USESTCDLLSTX55ANZ123

 location_using_clli:
 clli_code: DLLSTX55

 location_using_placemark:
 sub_thoroughfare: 1
 thoroughfare: ATT Way
 locality: Bedminster
 administrative_area: NJ
 postal_code: 07921-2694

Demands

A can be satisfied by using candidates drawn from inventories. Each demand is uniquely named. Inventory is considered to be opaque and can demand
represent anything from which candidates can be drawn.

A demand's resource requirements are determined by asking an for one or more sets of against which the inventory provider inventory candidates
demand will be made. An explicit set of candidates may also be declared, for example, if the only candidates for a demand are predetermined.

Demand criteria is dependent upon the inventory provider in use.

Provider-agnostic Schema

Key Value

inventory_provider A HAS-supported inventory provider.

inventory_type The reserved word (for cloud regions) or the reserved word (for existing service instances). Exactly one cloud service
inventory type may be specified.

attributes (Optional) A list of key-value pairs, that is used to select inventory candidates that match the specified attributes. The key should be all
a uniquely identifiable attribute at the inventory provider.

service_type (Option
al)

If is , a list of one or more provider-defined service types. If only one service type is specified, it inventory_type service
may appear without list markers ().[]

service_id (Optional) If is , a list of one or more provider-defined service ids. If only one service id is specified, it may inventory_type service
appear without list markers ().[]

default_cost (Option
al)

The default cost of an inventory candidate, expressed as currency. This must be specified if the inventory provider may not
always return a cost.

required_candidates
 (Optional)

A list of one or more candidates from which a solution will be explored. Must be a valid candidate as described in the candida
.te schema

excluded_candidates
 (Optional)

A list of one or more candidates that should be excluded from the search space. Must be a valid candidate as described in
the .candidate schema

existing_placement
 (Optional)

The current placement for the demand. Must be a valid candidate as described in the .candidate schema

| Key | Value | |------------------------|--------------------------| | | A HAS-supported inventory provider. | | | The inventory_provider inventory_type
reserved word (for cloud regions) or the reserved word (for existing service instances). Exactly one inventory type may be specified. | | cloud service at

 (Optional) | A list of key-value pairs, that is used to select inventory candidates that match the specified attributes. The key should be a tributes all
uniquely identifiable attribute at the inventory provider. | | (Optional) | If is , a list of one or more provider-service_type inventory_type service
defined service types. If only one service type is specified, it may appear without list markers (). | | (Optional) | If is [] service_id inventory_type ser

, a list of one or more provider-defined service ids. If only one service id is specified, it may appear without list markers (). | | vice [] default_cost
(Optional) | The default cost of an inventory candidate, expressed as currency. This must be specified if the inventory provider may not always return a
cost. | | (Optional) | A list of one or more candidates from which a solution will be explored. Must be a valid candidate as required_candidates
described in the . | | (Optional) | A list of one or more candidates that should be excluded from the search candidate schema excluded_candidates
space. Must be a valid candidate as described in the . | | (Optional) | The current placement for the demand. candidate schema existing_placement
Must be a valid candidate as described in the . |candidate schema

Examples

The following example helps understand a demand specification using Active & Available Inventory (A&AI), the inventory provider-of-record for ONAP.

Inventory Provider Criteria

Key Value

inventory_provider Examples: , .aai multicloud

inventory_type The reserved word (for new inventory) or the reserved word (for existing inventory). Exactly one cloud service
inventory type may be specified.

attributes (Optional) A list of key-value pairs to match against inventory when drawing candidates.

service_type (Optional) Examples may include , , etc.vG vG_MuxInfra

service_id (Optional) Must be a valid service id. Examples may include , , etc.vCPE VoLTE

default_cost (Optional) The default cost of an inventory candidate, expressed as a unitless number.

required_candidates (O
ptional)

A list of one or more valid candidates. See for details.Candidate Schema

excluded_candidates (O
ptional)

A list of one or more valid candidates. See for details.Candidate Schema

existing_placement (Opt
ional)

A single valid candidate, representing the current placement for the demand. See for details.candidate schema

| Key | Value | |------------------------|--------------------------| | | Examples: , . | | | The reserved inventory_provider aai multicloud inventory_type
word (for new inventory) or the reserved word (for existing inventory). Exactly one inventory type may be specified. | | cloud service attributes
(Optional) | A list of key-value pairs to match against inventory when drawing candidates. | | (Optional) | Examples may include , service_type vG vG_Mu

, etc. | | (Optional) | Must be a valid service id. Examples may include , , etc. | | (Optional) | The default xInfra service_id vCPE VoLTE default_cost
cost of an inventory candidate, expressed as a unitless number. | | (Optional) | A list of one or more valid candidates. See required_candidates Candi

 for details. | | (Optional) | A list of one or more valid candidates. See for details. | | date Schema excluded_candidates Candidate Schema existing
 (Optional) | A single valid candidate, representing the current placement for the demand. See for details. |_placement candidate schema

Candidate Schema

The following is the schema for a valid : candidate uniquely identifies a candidate. Currently, it is either a Service Instance ID or Cloud candidate_id
 identifies the type of the candidate. Currently, it is either or . *IRegion ID. candidate_type cloud service is defined as described in inventory_type

nventory Provider Criteria identifies the inventory from which the candidate was drawn. inventory_provider is an ID of a specific host (used host_id
 is expressed as a unitless number. only when referring to service/existing inventory). cost is always a location ID of the specified location location_id

 is an inventory provider supported location type. type (e.g., for a type of this will be an Cloud Region ID). cloud location_type is a valid latitude
location id (Optional) city corresponding to the latitude corresponding to the id is a valid longitude corresponding to the *location. longitude . city location

. location id (Optional) geographic _id (Optional) state corresponding to the state id (Optional) country corresponding to the *location. country . region
region corresponding to the . location ownerlocation_id (Optional) Name of the complex corresponding to the complex_name id ``cloud. (Optional)

azure aws att cloud versionrefers to the *cloud owner* (e.g., , , , etc.). * region (Optional) is an inventory provider
physical id`` (Optional) is an inventory provider supported CLLI code corresponding to the supported version of the cloud region. * location

cloud region.

Examples

service candidate

{
 "candidate_id": "1ac71fb8-ad43-4e16-9459-c3f372b8236d",
 "candidate_type": "service",
 "inventory_type": "service",
 "inventory_provider": "aai",
 "host_id": "vnf_123456",
 "cost": "100",
 "location_id": "DLLSTX55",
 "location_type": "azure",
 "latitude": "32.897480",
 "longitude": "-97.040443",
 "city": "Dallas",
 "state": "TX",
 "country": "USA",
 "region": "US",
 "complex_name": "dalls_one",
 "cloud_owner": "att-aic",
 "cloud_region_version": "1.1",
 "physical_location_id": "DLLSTX55",
}

cloud candidate

{
 "candidate_id": "NYCNY55",
 "candidate_type": "cloud",
 "inventory_type": "cloud",
 "inventory_provider": "aai",
 "cost": "100",
 "location_id": "NYCNY55",
 "location_type": "azure",
 "latitude": "40.7128",
 "longitude": "-74.0060",
 "city": "New York",
 "state": "NY",
 "country": "USA",
 "region": "US",
 "complex_name": "ny_one",
 "cloud_owner": "att-aic",
 "cloud_region_version": "1.1",
 "physical_location_id": "NYCNY55"
}

Questions * Currently, candidates are either service instances or cloud regions. As new services are on-boarded, this can be evolved to represent
different types of resources.

Examples

The following examples illustrate two demands:

vGMuxInfra: A vGMuxInfra service, drawing candidates of type from the inventory. Only candidates that match the customer_id and service
orchestration-status will be included in the search space.
vG: A vG, drawing candidates of type and from the inventory. Only candidates that match the customer_id and provisioning-status service cloud
will be included in the search space.

demands:
 vGMuxInfra:
 - inventory_provider: aai
 inventory_type: service
 service_type: vG_Mux
 attributes:
 customer-id: some_company
 orchestration-status: Activated
 vG:
 - inventory_provider: aai
 inventory_type: service
 service_type: vG
 attributes:
 customer-id: some_company
 provisioning-status: provisioned
 - inventory_provider: aai
 inventory_type: cloud

Questions * Do we need to support cost as a function ?

Constraints

A is used to inventory candidates from one or more demands that do not meet the requirements specified by the constraint. Since Constraint eliminate
reusability is one of the cornerstones of HAS, Constraints are designed to be service-agnostic, and is parameterized such that it can be reused across a
wide range of services. Further, HAS is designed with a plug-in architecture that facilitates easy addition of new constraint types.

Constraints are denoted by a key. Each constraint is uniquely named and set to a dictionary containing a constraint type, a list of demands constraints
to apply the constraint to, and a dictionary of constraint properties.

Considerations while using multiple constraints Constraints should be treated as a unordered list, and no assumptions should be made as regards to
All constraints are effectively AND-ed together. Constructs such as "Constraint X the order in which the constraints are evaluated for any given demand.

OR Y" are unsupported. * Constraints are reducing in nature, and does not increase the available candidates at any point during the constraint evaluations.

Schema

Key Value

CONSTRAINT_NAME Key is a unique name.

type The type of constraint. See for a list of currently supported values.Constraint Types

demands One or more previously declared demands. If only one demand is specified, it may appear without list markers ().[]

properties (Optional) Properties particular to the specified constraint type. Use if required by the constraint.

| Key | Value | |---------------------|-------------| | | Key is a unique name. | | | The type of constraint. See for a list CONSTRAINT_NAME type Constraint Types
of currently supported values. | | | One or more previously declared demands. If only one demand is specified, it may appear without list markers (demands

). | | (Optional) | Properties particular to the specified constraint type. Use if required by the constraint. |[] properties

constraints:
 CONSTRAINT_NAME_1:
 type: CONSTRAINT_TYPE
 demands: DEMAND_NAME | [DEMAND_NAME_1, DEMAND_NAME_2, ...]
 properties: PROPERTY_DICT

 CONSTRAINT_NAME_2:
 type: CONSTRAINT_TYPE
 demands: DEMAND_NAME | [DEMAND_NAME_1, DEMAND_NAME_2, ...]
 properties: PROPERTY_DICT

 ...

Constraint Types

Type Description

attribute Constraint that matches the specified list of Attributes.

distance_between_demands Geographic distance constraint between each pair of a list of demands.

distance_to_location Geographic distance constraint between each of a list of demands and a specific location.

instance_fit Constraint that ensures available capacity in an existing service instance for an incoming demand.

inventory_group Constraint that enforces two or more demands are satisfied using candidates from a pre-established group in the
inventory.

region_fit Constraint that ensures available capacity in an existing cloud region for an incoming demand.

zone Constraint that enforces co-location/diversity at the granularities of clouds/regions/availability-zones.

hpa Constraint that recommends optimal flavor and cloud region based on required hardware platform capabilities for
an incoming demand.

vim_fit Constraint that ensures capacity check with available capacity of VIMs based on incoming request.

license (Deferred) License availability constraint.

network_between_demands (De
ferred)

Network constraint between each pair of a list of demands.

network_to_location (Deferre
d)

Network constraint between each of a list of demands and a specific location/address.

| Type | Description | |---------------------|-------------| | | Constraint that matches the specified list of Attributes. | | attribute distance_between_demands
| Geographic distance constraint between each pair of a list of demands. | | | Geographic distance constraint between each of a distance_to_location
list of demands and a specific location. | | | Constraint that ensures available capacity in an existing service instance for an incoming instance_fit
demand. | | | Constraint that enforces two or more demands are satisfied using candidates from a pre-established group in the inventory_group
inventory. | | | Constraint that ensures available capacity in an existing cloud region for an incoming demand. | | | Constraint that region_fit zone
enforces co-location/diversity at the granularities of clouds/regions/availability-zones. | | hpa | Constraint that recommends optimal flavor and cloud

 | | | region based on required hardware platform capabilities for an incoming demand. vim_fit Constraint that ensures capacity check with available capacity
 | | (Deferred) | License availability constraint. | | (Deferred) | Network of VIMs based on incoming request. license network_between_demands

constraint between each pair of a list of demands. | | (Deferred) | Network constraint between each of a list of demands and a network_to_location
specific location/address. |

Note: Constraint names marked "Deferred" *will not

Threshold Values

Constraint property values representing a threshold may be an integer or floating point number, optionally prefixed with a comparison operator: , , , , = < > <=
or . The default is and optionally suffixed with a unit.>= =

Whitespace may appear between the comparison operator and value, and between the value and units. When a range values is specified (e.g.,)10-20 km
, the comparison operator is omitted.

Each property is documented with a default unit. The following units are supported:

Unit Values Default

Currency USD USD

Time ms, sec ms

Distance km, mi km

Throughput Kbps, , Mbps Gbps Mbps

| Unit | Values | Default | |------------|------------------------------|----------| | Currency | | | | Time | , | | | Distance | , | | | Throughput | USD USD ms sec ms km mi km K
, , | |bps Mbps Gbps Mbps

Attribute

Constrain one or more demands by one or more attributes, expressed as properties. Attributes are mapped to the specified properties, inventory provider
referenced by the demands. For example, properties could be hardware capabilities provided by the platform (flavor, CPU-Pinning, NUMA), features
supported by the services, etc.

Schema

Property Value

evaluate Opaque dictionary of attribute name and value pairs. Values must be strings or numbers. Encoded and sent to the service provider via a
plugin.

| Property | Value | |--------------|---| | | Opaque dictionary of attribute name and value pairs. Values evaluate
must be strings or numbers. Encoded and sent to the service provider via a plugin. |

Note: Attribute values are not detected/parsed as thresholds by the Homing framework. Such interpretations and evaluations are inventory provider-
specific and delegated to the corresponding plugin

constraints:
 sriov_nj:
 type: attribute
 demands: [my_vnf_demand, my_other_vnf_demand]
 properties:
 evaluate:
 cloud_version: 1.1
 flavor: SRIOV
 subdivision: US-TX
 vcpu_pinning: True
 numa_topology: numa_spanning

Proposal: Evaluation Operators

To assist in evaluating attributes, the following operators and notation are proposed:

Operator Name Operand

eq == Any object (string, number, list, dict)

ne !=

lt < A number (strings are converted to float)

gt >

lte <=

gte >=

any Any A list of objects (string, number, list, dict)

all All

regex RegEx A regular expression pattern

| Operator | Name | Operand | |--------------|-----------|--| | | | Any object (string, number, list, dict) | | | | | | | eq == ne != lt <
| A number (strings are converted to float) | | | | | | | | | | | | | | | | A list of objects (string, number, list, dict) | | | | | | gt > lte <= gte >= any Any all All reg

 | | A regular expression pattern |ex RegEx

Example usage:

constraints:
 sriov_nj:
 type: attribute
 demands: [my_vnf_demand, my_other_vnf_demand]
 properties:
 evaluate:
 cloud_version: {gt: 1.0}
 flavor: {regex: /^SRIOV$/i}
 subdivision: {any: [US-TX, US-NY, US-CA]}

Distance Between Demands

Constrain each pairwise combination of two or more demands by distance requirements.

Schema

Name Value

distance Distance between demands, measured by the geographic path.

| Name | Value | |--------------|---| | | Distance between demands, measured by the geographic path. |distance

The constraint is applied between each pairwise combination of demands. For this reason, at least two demands must be specified, implicitly or explicitly.

constraints:
 distance_vnf1_vnf2:
 type: distance_between_demands
 demands: [my_vnf_demand, my_other_vnf_demand]
 properties:
 distance: < 250 km

Distance To Location

Constrain one or more demands by distance requirements relative to a specific location.

Schema

Property Value

distance Distance between demands, measured by the geographic path.

location A previously declared location.

| Property | Value | |--------------|--| | | Distance between demands, measured by the geographic path. distance
| | | A previously declared location. |location

The constraint is applied between each demand and the referenced location, not across all pairwise combinations of Demands.

constraints:
 distance_vnf1_loc:
 type: distance_to_location
 demands: [my_vnf_demand, my_other_vnf_demand, another_vnf_demand]
 properties:
 distance: < 250 km
 location: LOCATION_ID

Instance Fit

Constrain each demand by its service requirements.

Requirements are sent as a request to a . Service controllers are defined by plugins in Homing (e.g.,).service controller sdn-c

A service controller plugin knows how to communicate with a particular endpoint (via HTTP/REST, DMaaP, etc.), obtain necessary information, and make
a decision. The endpoint and credentials can be configured through plugin settings.

Schema

Property Description

controller Name of a service controller.

request Opaque dictionary of key/value pairs. Values must be strings or numbers. Encoded and sent to the service provider via a plugin.

| Property | Description | |----------------|-----------------------------------| | | Name of a service controller. | | | Opaque dictionary of keycontroller request
/value pairs. Values must be strings or numbers. Encoded and sent to the service provider via a plugin. |

constraints:
 check_for_availability:
 type: instance_fit
 demands: [my_vnf_demand, my_other_vnf_demand]
 properties:
 controller: sdn-c
 request: REQUEST_DICT

Region Fit

Constrain each demand's inventory candidates based on inventory provider membership.

Requirements are sent as a request to a . Service controllers are defined by plugins in Homing (e.g.,).service controller sdn-c

A service controller plugin knows how to communicate with a particular endpoint (via HTTP/REST, DMaaP, etc.), obtain necessary information, and make
a decision. The endpoint and credentials can be configured through plugin settings.

Schema

Property Description

controller Name of a service controller.

request Opaque dictionary of key/value pairs. Values must be strings or numbers. Encoded and sent to the service provider via a plugin.

| Property | Description | |----------------|-----------------------------------| | | Name of a service controller. | | | Opaque dictionary of keycontroller request
/value pairs. Values must be strings or numbers. Encoded and sent to the service provider via a plugin. |

constraints:
 check_for_membership:
 type: region_fit
 demands: [my_vnf_demand, my_other_vnf_demand]
 properties:
 controller: sdn-c
 request: REQUEST_DICT

Zone

Constrain two or more demands such that each is located in the same or different zone category.

Zone categories are inventory provider-defined, based on the demands being constrained.

Schema

Property Description

qualifier Zone qualifier. One of or .same different

category Zone category. One of , , , , or .disaster region complex time maintenance

| Property | Value | |---------------|---| | | Zone qualifier. One of or . | | | qualifier same different category
Zone category. One of , , , , or . |disaster region complex time maintenance

For example, to place two demands in different disaster zones:

constraints:
 vnf_diversity:
 type: zone
 demands: [my_vnf_demand, my_other_vnf_demand]
 properties:
 qualifier: different
 category: disaster

Or, to place two demands in the same region:

constraints:
 vnf_affinity:
 type: zone
 demands: [my_vnf_demand, my_other_vnf_demand]
 properties:
 qualifier: same
 category: region

Notes

These categories could be any of the following: , , , , and . Really, we are disaster_zone region complex time_zone maintenance_zone
talking affinity/anti-affinity at the level of DCs, but these terms may cause confusion with affinity/anti-affinity in OpenStack.

HPA & Cloud Agnostic Intent

Constrain each demand's inventory candidates based on available Hardware platform capabilities (HPA) and also intent support. Note that currently HPA
and the cloud agnostic contraints will use the same schema.

Requirements mapped to the specified properties, referenced by the demands. For example, properties could be hardware capabilities inventory provider
provided by the platform through flavors or cloud-region eg:(CPU-Pinning, NUMA), features supported by the services, etc.

Schema

Property Description

evaluate List of id, type, directives and flavorProperties of each VM of the VNF demand.

| Property | Description | |----------------|-----------------------------------| | | evaluate List of id, type, directives and flavorProperties of each VM of the VNF demand.
 |

constraints:
 hpa_constraint:
 type: hpa
 demands: [my_vnf_demand, my_other_vnf_demand]
 properties:
 evaluate:
 - [List of {id: {vdu Name},
 type: {type of VF}
 directives: {DIRECTIVES LIST},
 flavorProperties: HPACapability DICT}]

HPACapability DICT :
 hpa-feature: basicCapabilities
 hpa-version: v1
 architecture: generic
 directives:
 - DIRECTIVES LIST
 hpa-feature-attributes:
 - HPAFEATUREATTRIBUTES LIST

DIRECTIVES LIST
 type: String
 attributes:
 - ATTRIBUTES LIST

ATTRIBUTES LIST
 attribute_name: String
 attribute_value: String

HPAFEATUREATTRIBUTES LIST
 hpa-attribute-key: String
 hpa-attribute-value: String
 operator: One of OPERATOR
 unit: String

OPERATOR : ['=', '<', '>', '<=', '>=', 'ALL']

VIM Fit

Constrain each demand's inventory candidates based on capacity check for available capacity of a list of VIMs

Requirements are sent as a request to a . vim controllers are defined by plugins in Homing (e.g.,).vim controller multicloud

A vimcontroller plugin knows how to communicate with a particular endpoint (via HTTP/REST, DMaaP, etc.), obtain necessary information, and make a
decision. The endpoint and credentials can be configured through plugin settings.

Schema

Property Description

controller Name of a vim controller. (e.g.,)multicloud

request Opaque dictionary of key/value pairs. Values must be strings or numbers. Encoded and sent to the vim controller via a plugin.

| Property | Description | |----------------|-----------------------------------| | | Name of a vim controller. | | | controller request Opaque dictionary of key/value
 |pairs. Values must be strings or numbers. Encoded and sent to the vim controller via a plugin.

constraints:
 check_cloud_capacity:
 type: vim_fit
 demands: [my_vnf_demand, my_other_vnf_demand]
 properties:
 controller: multicloud
 request: REQUEST_DICT

Inventory Group

Constrain demands such that inventory items are grouped across two demands.

This constraint has no properties.

constraints:
 my_group:
 type: inventory_group
 demands: [demand_1, demand_2]

Note: Only pair-wise groups are supported at this time. If three or more demands are specified, only the first two will be used.

License

Constrain demands according to license availability.

Support for this constraint is deferred.

Schema

Property Value

id Unique license identifier.

key Opaque license key, particular to the license identifier.

| Property | Value | |----------|--| | | Unique license identifier | | | Opaque license key, particular to the id key
license identifier |

constraints:
 my_software:
 type: license
 demands: [demand_1, demand_2, ...]
 properties:
 id: SOFTWARE_ID
 key: LICENSE_KEY

Network Between Demands

Constrain each pairwise combination of two or more demands by network requirements.

Support for this constraint is deferred.

Schema

Property Value

bandwidth (Optional) Desired network bandwidth.

distance (Optional) Desired distance between demands, measured by the network path.

latency (Optional) Desired network latency.

| Property | Value | |--------------------------|---| | (Optional) | Desired network bandwidth. | | bandwidth distan
 (Optional) | Desired distance between demands, measured by the network path. | | (Optional) | Desired network latency. |ce latency

Any combination of , , or must be specified. If none of these properties are used, it is treated as a malformed request.bandwidth distance latency

The constraint is applied between each pairwise combination of demands. For this reason, at least two demands must be specified, implicitly or explicitly.

constraints:
 network_requirements:
 type: network_between_demands
 demands: [my_vnf_demand, my_other_vnf_demand]
 properties:
 bandwidth: >= 1000 Mbps
 distance: < 250 km
 latency: < 50 ms

Network To Location

Constrain one or more demands by network requirements relative to a specific location.

Support for this constraint is deferred.

Schema

Property Value

bandwidth Desired network bandwidth.

distance Desired distance between demands, measured by the network path.

latency Desired network latency.

location A previously declared location.

| Property | Value | |---------------|---| | | Desired network bandwidth. | | | Desired bandwidth distance
distance between demands, measured by the network path. | | | Desired network latency. | | | A previously declared location. |latency location

Any combination of , , or must be specified. If none of these properties are used, it is treated as a malformed request.bandwidth distance latency

The constraint is applied between each demand and the referenced location, not across all pairwise combinations of Demands.

constraints:
 my_access_network_constraint:
 type: network_to_location
 demands: [my_vnf_demand, my_other_vnf_demand]
 properties:
 bandwidth: >= 1000 Mbps
 distance: < 250 km
 latency: < 50 ms
 location: LOCATION_ID

Capabilities

Constrain each demand by its cluster capability requirements. For example, as described by an OpenStack Heat template and operational environment.

Support for this constraint is deferred.

Schema

Property Value

specific
ation

Indicates the kind of specification being provided in the properties. Must be . Future values may include , , etc.heat tosca Homing

template For specifications of type , a single stack in OpenStack Heat Orchestration Template (HOT) format. Stacks may be expressed as a heat
URI reference or a string of well-formed YAML/JSON. Templates are validated by the Heat service configured for use by HAS. Nested
stack references are unsupported.

environm
ent (Optio
nal)

For specifications of type , an optional Heat environment. Environments may be expressed as a URI reference or a string of well-heat
formed YAML/JSON. Environments are validated by the Heat service configured for use by Homing.

| Property | Value | |--------------|---| | | Indicates the kind of specification being provided in the specification
properties. Must be . Future values may include , , etc. | | | For specifications of type , a single stack in OpenStack heat tosca Homing template heat
Heat Orchestration Template (HOT) format. Stacks may be expressed as a URI reference or a string of well-formed YAML/JSON. Templates are validated
by the Heat service configured for use by HAS. Nested stack references are unsupported. | | (Optional) | For specifications of type , environment heat
an optional Heat environment. Environments may be expressed as a URI reference or a string of well-formed YAML/JSON. Environments are validated by
the Heat service configured for use by Homing. |

constraints:
 check_for_fit:
 type: capability
 demands: [my_vnf_demand, my_other_vnf_demand]
 properties:
 specification: heat
 template: http://repository/my/stack_template
 environment: http://repository/my/stack_environment

Reservations

A allows reservation of resources associated with candidate that satisfies one or more demands.Reservation

Similar to the constraint, requirements are sent as a request to a that handles the reservation. Service controllers are instance_fit service controller
defined by plugins in Homing (e.g.,).sdn-c

The service controller plugin knows how to make a reservation (and initiate rollback on a failure) with a particular endpoint (via HTTP/REST, DMaaP, etc.)
of the service controller. The endpoint and credentials can be configured through plugin settings.

Schema

Property Description

controller Name of a service controller.

request Opaque dictionary of key/value pairs. Values must be strings or numbers. Encoded and sent to the service provider via a plugin.

| Property | Description | |----------------|-----------------------------------| | | Name of a service controller. | | | Opaque dictionary of keycontroller request
/value pairs. Values must be strings or numbers. Encoded and sent to the service provider via a plugin. |

resource_reservation:
 type: instance_reservation
 demands: [my_vnf_demand, my_other_vnf_demand]
 properties:
 controller: sdn-c
 request: REQUEST_DICT

Optimizations

An allows specification of a objective function, which aims to maximize or minimize a certain value that varies based on the choice of Optimization
candidates for one or more demands that are a part of the objective function. For example, an objective function may be to find the cloud-region to closest
a customer to home a demand.

Optimization Components

Optimization definitions can be broken down into three components:

Component Key Value

Goal minimize A single Operand (usually) or Function.sum

Operator sum, product Two or more Operands (Numbers, Operators, Functions)

Function distance_between A two-element list consisting of a location and demand.

| Component | Key | Value | |-----------|----------------------|---| | Goal | | A single Operand (usually) or minimize sum
Function | | Operator | , | Two or more Operands (Numbers, Operators, Functions) | | Function | | A two-element list sum product distance_between
consisting of a location and demand. |

Example

Given a customer location , two demands and , and weights and , the optimization criteria can be expressed as:cl vG1 vG2 w1 w2

minimize(weight1 * distance_between(cl, vG1) + weight2 * distance_between(cl, vG2))

This can be read as: "Minimize the sum of weighted distances from cl to vG1 and from cl to vG2."

Such optimizations may be expressed in a template as follows:

parameters:
 w1: 10
 w2: 20

optimization:
 minimize:
 sum:
 - product:
 - {get_param: w1}
 - {distance_between: [cl, vG1]}
 - product:
 - {get_param: w2}
 - {distance_between: [cl, vG2]}

Or without the weights as:

optimization:
 minimize:
 sum:
 - {distance_between: [cl, vG1]}
 - {distance_between: [cl, vG2]}

Template Restriction

While the template format supports any number of arrangements of numbers, operators, and functions, HAS's solver presently expects a very specific
arrangement.

Until further notice:

Optimizations must conform to a single goal of followed by a operator.minimize sum
The sum can consist of two function calls, or two operators.distance_between product
If a operator is present, it must contain at least a function call, plus one optional number to be used for weighting.product distance_between
Numbers may be referenced via .get_param
The objective function has to be written in the sum-of-product format. In the future, HAS can convert product-of-sum into sum-of-product
automatically.

The first two examples in this section illustrate both of these use cases.

Inline Operations

If desired, operations can be rewritten inline. For example, the two operations from the previous example can also be expressed as:product

parameters:
 w1: 10
 w2: 20

optimization:
 minimize:
 sum:
 - {product: [{get_param: w1}, {distance_between: [cl, vG1]}]}
 - {product: [{get_param: w2}, {distance_between: [cl, vG2]}]}

In turn, even the operation can be rewritten inline, however there is a point of diminishing returns in terms of readability!sum

Notes

In the first version, we do not support more than one dimension in the optimization (e.g., Minimize distance and cost). For supporting multiple
dimensions we would need a function the normalize the unit across dimensions.

Intrinsic Functions

Homing provides a set of intrinsic functions that can be used inside templates to perform specific tasks. The following section describes the role and syntax
of the intrinsic functions.

Functions are written as a dictionary with one key/value pair. The key is the function name. The value is a list of arguments. If only one argument is
provided, a string may be used instead.

a_property: {FUNCTION_NAME: [ARGUMENT_LIST]}

a_property: {FUNCTION_NAME: ARGUMENT_STRING}

Note: These functions can only be used within "properties" sections.

get_file

The function inserts the content of a file into the template. It is generally used as a file inclusion mechanism for files containing templates from get_file
other services (e.g., Heat).

The syntax of the function is:get_file

{get_file: <content key>}

The key is used to look up the dictionary that is provided in the REST API call. The Homing client command () is content files Homing get_file
aware and populates the dictionary with the actual content of fetched paths and URLs. The Homing client command supports relative paths and files
transforms these to the absolute URLs required by the Homing API.

Note: The argument must be a static path or URL and not rely on intrinsic functions like . The Homing client does not process get_file get_param
intrinsic functions. They are only processed by the Homing engine.

The example below demonstrates the function usage with both relative and absolute URLs:get_file

constraints:
 check_for_fit:
 type: capacity
 demands: [my_vnf_demand, my_other_vnf_demand]
 properties:
 template: {get_file: stack_template.yaml}
 environment: {get_file: http://hostname/environment.yaml}

The dictionary generated by the Homing client during instantiation of the plan would contain the following keys. Each value would be of that file's files
contents.

file:///path/to/stack_template.yaml
http://hostname/environment.yaml

Questions

If Homing will only be accessed over DMaaP, files will need to be embedded using the Homing API request format.

get_param

The function references an input parameter of a template. It resolves to the value provided for this input parameter at runtime.get_param

The syntax of the function is:get_param

{get_param: <parameter name>}

{get_param: [<parameter name>, <key/index1> (optional), <key/index2> (optional), ...]}

parameter name is the parameter name to be resolved. If the parameters returns a complex data structure such as a list or a dict, then subsequent keys
or indices can be specified. These additional parameters are used to navigate the data structure to return the desired value. Indices are zero-based.

The following example demonstrates how the function is used:get_param

parameters:
 software_id: SOFTWARE_ID
 license_key: LICENSE_KEY
 service_info:
 provider: dmaap:///full.topic.name
 costs: [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

constraints:
 my_software:
 type: license
 demands: [demand_1, demand_2, ...]
 properties:
 id: {get_param: software_id}
 key: {get_param: license_key}

 check_for_availability:
 type: service
 demands: [my_vnf_demand, my_other_vnf_demand]
 properties:
 provider_url: {get_param: [service_info, provider]}
 request: REQUEST_DICT
 cost: {get_param: [service_info, costs, 4]}

In this example, properties would be set as follows:

Key Value

id SOFTWAREID

key LICENSEKEY

provider_url dmaap:///full.topic.name

cost 50

| Key | Value | |------------------|--------------------------| | | SOFTWARE KEY | | | dmaap:///full.topic.name | | | 50 |id ID | | | LICENSEkey provider_url cost

Contact

Shankar Narayanan (shankarpnsn@gmail.com)

dmaap://wiki.onap.org/full.topic.name

	OOF-HAS Homing Specification Guide

