
Integration (5/11/2017)

Project Name:
Project description:
Scope:

Testing Principles
Jenkins Testing Flow
Testing Roles and Responsibilities

FUNCTIONAL & REGRESSION TESTING
Testing Terminology

Architecture Alignment:
Other Information:
Examples of end to end use cases:
Key Project Facts

Project Name:

Proposed name for the project: Integration
Proposed name for the repository: integration

Project description:
Integration is responsible for ONAP cross-project system integration, CI/CD, and all related end-to-end release use cases testing with VNFs necessary for
the successful delivery and industry adoption of the ONAP project as a whole.

Scope:

It provides all the cross-project infrastructure framework and DevOps toolchain (Continuous Integration, etc.), code and scripts, best practice guidance,
benchmark and testing reports and white papers related to:

Cross-project Continuous System Integration Testing (CSIT)
End-to-End (ETE) release use cases testing with VNFs with repeatability
Service design for end-to-end release use cases
(obsolete)Open Lab: building and maintenance of community integration labs
Continuous Distribution (CD) to ONAP community integration labs
Reference VNFs that can be used to show how the ONAP platform handles

VNF installation
VNF life cycle management
VNF Requirement compliance

https://wiki.onap.org/display/DW/%28obsolete%29Open+Lab
https://wiki.onap.org/pages/viewpage.action?pageId=3246925
https://wiki.onap.org/display/DW/VNF+Requirements

Category Primary
Contact /
Participants

Sub-Category Description Problem Being Solved

1 Test Daniel Rose

Christophe
Closset

Anaël Closson

Kang Xi

Gary Wu

Ran Pollak

Test
Automated testing infrastructure and tools

CSIT: testing of individual ONAP microservices and
small collections of ONAP microservices supported by
mocked services as necessary
End-to-End (ETE) test flows using a full ONAP
deployment

Code and tools for automatic system testing and continuous
integration test flows across ONAP projects
Common guidelines, templates, generic tools, infrastructure,
and best practices to help project developers to write unit and
system test code
Test requirement from developer point of view.

Automate the building artifacts/binaries to
minimize human errors and reduce engineering
costs
Ensure that changes in one project will not
break the functionality of other projects
Assure that the entire ONAP project/product
functions correctly in the case of continual
change in subprojects
Ensure consistency in unit and system testing
methodology across all the ONAP projects
Capture security issues

S3P
Test cases for performance, scalability, resilience/stress
testing, longevity
Benchmarking and performance whitepapers

Define standard S3P testing metrics
Provide and publish benchmarking results

2 Release Gary Wu

Christophe
Closset

Anaël Closson

CI Management

(ci-management
repo)

Scripts and definitions for build and CI jobs in Jenkins

includes any docker build jobs for mock/simulated
services
excludes docker build jobs for ONAP components
(assumed to be handled by the ONAP Operations
Manager project)
Required to support the execution of CI jobs (e.g. for
Jenkins)

Required to support the execution of CI jobs (e.g. for
Jenkins)

Autorelease
Define community-wide artifact versioning and release strategy
Scripts and Jenkins job definitions to build the artifacts/binaries
(e.g. zip/tar.gz files) that are used in the release candidates
and final release
Detect/resolve cross-project compilation dependency issues
Generate release candidates and final release artifacts

Detect/resolve cross-project compilation
dependency issues
Generate release candidates and final release
artifacts

Distribution

(Refer to ONAP
Operations

)Manager project

Current decision is to go with docker images as the primary
distribution method
Docker builds and images are assumed to be handled by the O
NAP Operations Manager project.

(Refer to)ONAP Operations Manager project

Packaging

(Refer to ONAP
Operations

)Manager project

Current decision is to forgo any deb or RPM packages, and go
with docker images as the primary distribution method
Docker builds and images are assumed to be handled by the O

.NAP Operations Manager project

(Refer to)ONAP Operations Manager project

3 Bootstrap Victor Morales

Kiran Kamineni

Nathaniel Potter

Bootstrap A framework to automatically install and test a set of base
infrastructure components for new developer Reduce the barrier of entry to allow new ONAP

developers to ramp up onto active development
quickly
Reduce the cost to the community in
responding to simple environment setup
questions faced by new developers

Infrastructure
Specification

Develop the specifications for the “ONAP compliant” deployment and
test environment

Assist the planning and procurement of the necessary
hardware and infrastructure for setting up ONAP
environments

4 Developer
Lab

Yang Xu

He Rui

Bin Yang

End-to-end release
use cases testing
with VNFs with
repeatability

Create automatic test cases and script for VF testing
Perform VF compliant testing and verification using tools
provided by ONAP
Delivery the testing reports and whitepaper

Assist define the testing metrics
Reduce adoption risks for end-users

5 E2E
Integration
Lab

Chengli Wang

Kang Xi

Yang Xu

End to end
deployment in
"real" env using O
pen Lab

Scripts and definitions for setting up a POC sample
deployment of use cases in lab settings
Provisioning, installation, and setup of all the telco equipment
such as switches, routers, and gateways to enable end to end
testing
Allow remote access to the lab environment for interoperability
testing
Automatic updates of code in lab environment from future
releases

Support the needs of consistent, reproducible
lab setup for demo and POC purposes
Promote easy interoperability testing with
different hardware devices, SDN controllers, etc.
Automate the process of keeping the lab code
up to date with the latest changes

https://wiki.onap.org/display/~DR695H
https://wiki.onap.org/display/~ChrisC
https://wiki.onap.org/display/~ChrisC
https://wiki.onap.org/display/~nabero
https://wiki.onap.org/display/~kxi
https://wiki.onap.org/display/~gwu
https://wiki.onap.org/display/~Ranpollak
https://wiki.onap.org/download/attachments/4718718/Lab-Testing%20Terms%20Clarification.xlsx?version=1&modificationDate=1496772349000&api=v2
https://wiki.onap.org/download/attachments/4718718/Lab-Testing%20Terms%20Clarification.xlsx?version=1&modificationDate=1496772349000&api=v2
https://wiki.onap.org/download/attachments/4718718/Lab-Testing%20Terms%20Clarification.xlsx?version=1&modificationDate=1496772349000&api=v2
https://wiki.onap.org/download/attachments/4718718/ONAP%20S3P.pdf?version=1&modificationDate=1493996741000&api=v2
https://wiki.onap.org/display/~gwu
https://wiki.onap.org/display/~ChrisC
https://wiki.onap.org/display/~ChrisC
https://wiki.onap.org/display/~nabero
https://wiki.onap.org/pages/viewpage.action?pageId=3246809
https://wiki.onap.org/pages/viewpage.action?pageId=3246809
https://wiki.onap.org/pages/viewpage.action?pageId=3246809
https://wiki.onap.org/pages/viewpage.action?pageId=3246809
https://wiki.onap.org/pages/viewpage.action?pageId=3246809
https://wiki.onap.org/pages/viewpage.action?pageId=3246809
https://wiki.onap.org/pages/viewpage.action?pageId=3246809
https://wiki.onap.org/pages/viewpage.action?pageId=3246809
https://wiki.onap.org/pages/viewpage.action?pageId=3246809
https://wiki.onap.org/pages/viewpage.action?pageId=3246809
https://wiki.onap.org/pages/viewpage.action?pageId=3246809
https://wiki.onap.org/pages/viewpage.action?pageId=3246809
https://wiki.onap.org/pages/viewpage.action?pageId=3246809
https://wiki.onap.org/pages/viewpage.action?pageId=3246809
https://wiki.onap.org/display/~electrocucaracha
https://wiki.onap.org/display/~kirankamineni
https://wiki.onap.org/display/~ntpttr
https://wiki.onap.org/display/~xuyang11
https://wiki.onap.org/display/~Horry
https://wiki.onap.org/display/~biny993
https://wiki.onap.org/display/~wangchengli
https://wiki.onap.org/display/~kxi
https://wiki.onap.org/display/~xuyang11
https://wiki.onap.org/display/DW/%28obsolete%29Open+Lab
https://wiki.onap.org/display/DW/%28obsolete%29Open+Lab

6 Reference
VNFs Project

Marco Platania

Andrew Fenner

Reference VNFs
Project

Two basic VNFs, namely a virtual firewall and a virtual load balancer
(with virtual DNSs), have been . The objectives of the provided
project are to improve, extend and maintain the vFirewall and
vLoadBalancer VNFs:

Allow ONAP to change vFirewall rules during execution
Platform independence (Rackspace, vanilla Openstack, Azure,
...)
Visualization tools that allow users to monitor the behavior of
the reference VNFs as well as the effect of ONAP closed-loop
operations against the VNFs
Tools that allow users to interact with the reference VNFs (e.g.
alter the behavior of a VNF so as to violate predefined policies,
in order to trigger ONAP closed-loop operations)

The goal is to build reference VNFs that can be
used to show how the ONAP platform manages
VNFs installation and lifetime management.
Reference VNFs can also be used as a means
to test the platform itself, e.g. verify whether
VNFs on-boarding, deployment, and ONAP
closed-loop operations work.
Reference VNFS should also demonstrate and
document complianceVNF Requirement

7 O-Parent Gary Wu O-Parent
ONAP Parent provides common default settings for all the
projects participating in simultaneous release.

Isolate all the common external dependencies,
default version, dependency management,
plugin management, etc.
Avoid duplicate/conflicting settings for each
project
Each project sets its parent to inherit the
defaults from ONAP Parent
Project level external dependencies and
versions can be overridden if necessary

Testing Principles

We expect test for all testing in scope for release 1.0automation

Regression, Unit and Feature/Function testing should be triggered by build process
All testing must be able to execute on the selected ONAP environments
Unit Testing for any project should have at least 30% code coverage
Any new feature should be delivered with its associated unit tests/feature tests

Jenkins Testing Flow

https://wiki.onap.org/display/~platania
https://wiki.onap.org/display/~afenner
https://wiki.onap.org/pages/viewpage.action?pageId=3246925
https://wiki.onap.org/pages/viewpage.action?pageId=3246925
https://wiki.onap.org/display/DW/Installing+and+Running+the+ONAP+Demos
https://wiki.onap.org/display/DW/VNF+Requirements
https://wiki.onap.org/display/~gwu

Testing Roles and Responsibilities

Types of Testing Dev. Team CSIT Team E2E Team S3P Team

Unit Testing x

Feature/Functional Testing x

Integration/Pair-Wise Testing x

End-to-End Testing x

Regression Testing x x x x

Performance Testing x

Acceptance Testing x x

Usability Testing x

Install/Uninstall Testing x

Recovering Testing x x

Security Testing x

Stability Testing x

Scalability Testing x

Application Testing x

FUNCTIONAL & REGRESSION TESTING

https://wiki.onap.org/display/DW/Creating+a+CSIT+Test

Functional Testing - when new features & use cases are introduced that the existing use cases are enhanced to be compatible with the new functionality.
For example, if enhancements were needed in the VCPE or VOLTE U/C to upgrade the PNF support introduced in R4 Dublin. ("Dictionary" Definition) Func

 is a software testing process used within software development in which software is tested to ensure that it conforms with all requirements. tional testing
Functional testing is a way of checking software to ensure that it has all the required functionality that's specified within its functional requirements.

Regression Testing - when new features & use cases are introduced doesn't break existing use cases. For example, if PNF onboarding/onboarding (PNF
package) U/C introduced in R4 Dublin didn't break the functionality of VCPE or VOLTE. ("Dictionary" Definition) is re-running functional Regression testing
and non-functional tests to ensure that previously developed and tested software still performs after a change. Changes that may require regression
testing include bug fixes, software enhancements, configuration changes, and even substitution of electronic components. As regression test suites tend to
grow with each found defect, test automation is frequently involved. Sometimes a change impact analysis is performed to determine an appropriate subset
of tests (non-regression analysis).

Integration Testing - testing which brings together the platform components and new development to realize a use case. For example, testing centered
around making sure that the SDC, A&AI, SO, VID, etc components work together to deliver the BBS Use Case. ONAP has a Integration Project, there is a
dedicate team who is coordinating the integration efforts. Additional, each of the Use Cases are discussing have "roadmap" their integration work.
("Dictionary" Definition) is a software testing methodology used to test individual software components or units of code to verify Integration testing
interaction between various software components and detect interface defects. Components are tested as a single group or organized in an iterative
manner. After the integration testing has been performed on the components, they are readily available for system testing.

TESTING CONCERNS:

LIMITED RESOURCES - the Integration project (test team) in ONAP is a small team, which will depend on automation as much as possible to try to cover
the Regression and Functional testing aspects as much as possible.

 RELEASE RISK - there is obviously a risk adding new software without regression and functional testing, in that a lot of integration testing (from R3) was
done to make sure that new U/C introduced in R3 worked properly, and now introducing new U/C, functionality, and requirements could potentially break
that already tested & working software.

AUTOMATION - it is desirable to have as much automation as possible in testing so that tests can be re-run so that functionality can be re-checked in the
current release when new functionality is introduced.

LAB ENVIRONMENT - U/C were developed in particular environments, the xNFs are installed in a particular environment, and these environments change
over time. Limitations need to be identified with additional equipment or new equipment etc.

Typical Software Industry Testing Process. ONAP Development & Integration testing can consider and incorporate some of the key concepts with a
"typical" software industry testing process to insure quality software is delivered for the Use Case development:

Testing Terminology

Unit Testing (UT) – Unit testing focuses on individual software components or modules. Typically, UT is done by the programmers and not by
testers, as it requires detailed knowledge of the internal program design and code; UT may require developing test driver modules or test
harnesses. Code coverage is also one of the objectives of UT.
Feature/Functional Testing – Feature/Functional testing, unlike unit testing, focuses on the output as defined per requirement (user story). This
type of testing is black-box type testing, geared towards functional requirements on an application basis.
Integration/Pair-Wise Testing – Integration/Pair-wise testing integrates all of the modules of the solution in a single environment to verify
combined functionality after integration. It ensures everything comes together and there is end-to-end communications between all the integrated
elements.
End-to-End Testing – End-to-End testing involves testing of a complete application environment in scenarios that closely mimic real-world use,
such as interacting with a database, using network communications, or interacting with other hardware, applications, or systems, if appropriate.
Regression Testing – Testing the application as a whole for the modification in any module or functionality. Typically, automation tools are used
for regression testing since it is difficult to cover all aspects of the system in a manual fashion.
Performance Testing – Performance testing tests the solution to see what throughput levels can be achieved based on the given platform.
Performance testing term is often used interchangeably with ‘stress’ testing (pushes the system beyond its specifications to check how and when
it fails) and ‘load’ testing (which checks the system behavior under steady load.). An objective of this testing is to verify that the system meets
performance requirements. Different performance and load tools are used for this type of testing. [Note: Capacity testing and performance testing
are closely aligned. Capacity testing tests against product requirements to ensure the system meets requirements. Performance testing pushes
the system to highest numbers it can achieve before it becomes unstable or success rate is unacceptable.]
Acceptance Testing – Normally this type of testing is done to verify if system meets the customer specified requirements. User or customer do
this testing to determine whether to accept application.
Usability Testing – Usability testing is focused on testing of user interfaces (UI’s). It checks user-friendliness along with application flows; e.g.,
can new users understand the application easily, is proper help documented whenever users get stuck at any point, etc…. Basically system
navigation is checked in this testing.
Install/Uninstall Testing – This category of testing validates full or partial install/uninstall, and upgrade and rollback processes on different
operating systems under different hardware, software environment including backup/restore mechanisms.
Recovery Testing – This category of testing validates how well a system recovers from crashes, hardware failures, or other catastrophic
problems in various configurations such as HA and Geo-Redundancy.
Security Testing – Security testing looks for vulnerabilities in the software that would make the system susceptible to malicious users. It tests
how well the system is protected against unauthorized internal or external access. It checks if system and databases are safe from external
attacks.
Stability Testing – This type of testing validates that the system can run in steady state for an extended period of time without any system
downtime or crashes. Typical stability test is run for 72hrs. If any problems are encountered during the stability test, such as application crash,
high failure rates, the test is stopped and issue is investigated. The stability test is restarted after a fix is identified.
Scalability Testing – This type of testing is an extension of performance testing. The purpose of scalability testing is to validate that the system
can scale efficiently by identifying major workloads and mitigate bottlenecks that can impede the scalability of the application.
Application Testing – Tests the platform in the context of a particular application.

Architecture Alignment:

How does this project fit into the rest of the ONAP Architecture?
What other ONAP projects does this project depend on?

All ONAP projects
How does this align with external standards/specifications?
Are there dependencies with other open source projects?

Robot
Jenkins
OpenStack
Docker

Other Information:

http://robotframework.org/
https://jenkins.onap.org/

Preliminary V1 Plan
Integration V1 Release Plan

ONAP Community Labs Specification
Lab Resource

Link to seed code (if applicable)
ECOMP existing repos:

testsuite
testsuite/heatbridge
testsuite/properties
testsuite/python-testing-utils
demo
ci-management

OPEN-O existing repos:
integration
ci-management
oparent

Vendor Neutral
This project is vendor neutral

Meets Board policy (including IPR)
Yes

Use the above information to create a key project facts section on your project page

Examples of end to end use cases:

VoLTE

- VoLTEservice design and creation: VNFs, network resource, workflow, alarms, DGs, DCAE template are onboarded. VoLTE e2e network
service, including the connectivity between data centers, are designed and distributed successfully

- Close loop design: DCAE threshold crossing rules, Holmes correlation rules, and operation policy are designed and distributed by CLAMP
successfully

- Instantiation: VNFs are deployed in edge and core data centers successfully, underlay and overlay WAN network cross the two data centers
is setup correctly

- Auto-healing/auto-scaling: With event data from VIM or VNF, certain auto-healing/auto-scaling policy is triggered and proper actions are
taken to remedy the situation

- Service termination: After user terminates the VoLTE service, VNFs and related resource for the service are properly removed, and WAN
connectivity between the two data center is also removed successfully.

Residential vCPE use case

- Design time: All the VPP-based VNFs are successfully onboarded.

- Design time: Infrastructure and per-customer service are created. Associated workflows, policies, DGs, and data analytics created,
validated, and properly distributed

- Instantiation: Infrastructure service is instantiated and properly configured. This is performed only once.

- Customer order: Per-customer service is instantiated and properly configured. This is performed on-demand.

- Data plane: Once a customer service is up and running, packets can be exchanged between the customer BRG emulator and the
webserver.

- Auto-healing: Inject a packet loss event to invoke threshold crossing event, which then causes APPC to restart the vG_MUX VM. Service is
back to normal once restart is complete.

Key Project Facts

Project Name: Integration

JIRA project name: integration

JIRA project prefix: integration

Repo name:

integration
demo
testsuite
testsuite/heatbridge
testsuite/properties
testsuite/python-testing-utils
ci-management
oparent

https://wiki.onap.org/display/DW/Integration+V1+Release+Plan
https://wiki.onap.org/display/DW/Lab+Resource

Lifecycle State: incubation
Primary Contact: Helen Chen helen.chen@huawei.com
Project Lead:

 [integration] mailing list tag
Committers:

See above

*Link to TSC approval:
 Link to approval of additional submitters:

mailto:christopher.donley@huawei.com

	Integration (5/11/2017)

