
SO Plug-in Support for VNFM (SO VNFM Adapter)

Resource commitment:
Ericsson: primary contact: Byung-Woo Jun

Usecase Lead:
Ericsson: Byung-Woo Jun

TSC Contact:
Ericsson: Stephen Terrill

Participating ONAP Projects:
Implementation: SO, AAI, SDC (not in Dublin)

SO-ETSI-VNFM Adapter for Dublin Presentation slide deck at ONAP Paris 2019

Associated JIRA tickets

JIRA ONAPARC-310     (SO Adapter which  -   ONAPARC-310 SO Adapter which uses SOL003 to connect to S/G VNFM CLOSED

uses SOL003 to connect to S/G VNFM)
JIRA SO-1508 (SO SOL003 plugin support to connect to an external VNFM): Epic
See the user stories below for other JIRA tickets

SO-ETSI Alignment Use Cases for Dublin

Leverage ETSI standards for VNF LCM in SO
Build SO VNFM Adapter

Use SOL003 APIs (2.5.1) for VNF LCM
Support operations such as create, instantiate, grant, terminate, delete, LCN subscription and LCN

Enhance SO BPMN workflows & recipes

VNF-level Building Block workflows, leveraging VNFM Adapter 
Passing VNF LCM requests to VNFM using VNFM Adapter

Note: the followings are candidates for the El Alto release.
Provide VNF package management for VNFM
Policy-based VNF scaling thru VNFM Adapter
Support of remaining SOL003 APIs
VNF Package handling (Download & Parse VNF Package)

Get package files from the SDC repository thru SO
Provide VNF package(s), VNFDs and Artifacts to VNFM
SO Catalog DB enhancement for SOL001/SOL004 is identified as future release work

SO VNFM Adapter Requirements for Dublin

A new SO sub-component, following ONAP Microservice Architecture
A Generic VNFM Adapter, supporting SOL003-compliant SVNFMs
Support of SOL003 APIs for VNFM LCM

https://wiki.onap.org/display/~byungwoojun
https://wiki.onap.org/display/~byungwoojun
https://wiki.onap.org/display/~auztizza
https://jira.onap.org/browse/ONAPARC-310


Invoking SVNFM based on SOL003 VNF LCM APIs as a client
use  swagger to https://forge.etsi.org/gitlab/nfv/SOL002-SOL003/2.5.1/master/src/SOL003/VNFLifecycleManagement
generate a client
support Create VNF, Instantiate VNF, Terminate/Delete VNF operations as a client
collect data for SOL003 API parameters from SDNC, A&AI and OOF (for models with homing: OOF-based granting 
might be supported in El Alto)

Granting, based on ETSI VNFLifecycleOperationGranting
use  swagger https://forge.etsi.org/gitlab/nfv/SOL002-SOL003/tree/master/src/SOL003/VNFLifecycleOperationGranting
to generate grant services
Grant decisions based on the data either from 1) OOF (based on location, inventory data, resource availability, 
business rules, etc.) or 2) VIM registration, cloud region, etc. 
In Dublin, the option #2 will be supported first.

Subscription to SVNFM for getting notifications
STARTING, PROCESSING, COMPLETED

SVNFM selection based on configuration values that are configured during VNF on-boarding and VNFM registration. Two methods are 
considered:

Correlation between VNF NF Type and VNFM Type (Nokia method)
Utilizing VNFD vnfm_info:type, VNFM registration values: VNFM type, Cloud region, vendor

SVNFM Requirements for Dublin (SVNFM Vendor Responsibilities)

Vendor SVNFM must be "SOL003-compliant"
Providing SOL003 APIs for VNFM LCM, based on ETSI VNFLifecycleManagement

Use   swagger for providing https://forge.etsi.org/gitlab/nfv/SOL002-SOL003/2.5.1/master/src/SOL003/VNFLifecycleManagement
services
Create
Instantiate
Grant request to SO VNFM Adapter, as a client
Life cycle notification
Terminate/Delete

Registration itself to ONAP (thru A&AI ESR) - Name, Type, Vendor, Version, URL, VIM, Username and Password
Providing Subscription Services for Life-cycle Management Notifications
Due to SDC SOL004 package support issues in Dublin, manual onboarding VNF Packages are needed for SVNFM. 
Support of the "Direct Mode" of Resource Management only

After receiving a grant permission, the VNFM sends requests for resources directly to VIM
Invoking MultiCloud from VNFM is under discussion, but not for Dublin
The "Indirect Mode" of Resource Management is being discussed, but not for Dublin

VNFM Adapter Component Architecture

The following diagram depicts the component architecture.
The VNFM Adapter will be a SO sub-component; packaged as a docker and running in a container.
VNFM will register into A&AI ESR and VNFM Adapter will locate a proper VNFM based on VNF NF Type or others.
Communications between the VNFM Adapter and SVNFM will be SOL003 API-based.
Communications between the SO BPMN Infra VNFM Adapter REST Client and the VNFM Adapter NBI will be SO-specific; i.e., it does 
not follow ETSI standards at this time.
SO SDC Controller receives SOL001/SOL004-based CSAR from SDC, and stores the CSAR reference URLs to TOSCA_CSAR 
database table (see the note below). 

Currently, VNF package output from SDC is not ETSI alignment. If SDC does not support it Dublin, use the standard package 
under the artifact directory (e.g., Artifact/Deployment/Others)
In Dublin release, there could be two CSAR file contents: one for the original CSAR and one for ONAP-compliant CSAR 
(maybe the ONAP-compliant CSAR includes the original package)
It is assumed that SDC keeps the original vendor VNF packages in their repository, and VNFM Adapter retrieves the original 
vendor CSAR files from the repository.
Note: if SDC does not support SOL004 VNF package in Dublin, the SO VNFM Adapter will retrieve the VNFD from SDC 
directly, bypassing SO TOSCA_CSAR database table. 

New VNF-level workflows that use VNFM Adapter will be implemented, and these new workflows will be invoked from 1) the (Network) 
Service-level workflows based on VNF type and other criteria or 2) the al carte VNF invocation from VID.

In Dublin, the second option will be supported.

https://forge.etsi.org/gitlab/nfv/SOL002-SOL003/2.5.1/master/src/SOL003/VNFLifecycleManagement
https://forge.etsi.org/gitlab/nfv/SOL002-SOL003/tree/master/src/SOL003/VNFLifecycleOperationGranting
https://forge.etsi.org/gitlab/nfv/SOL002-SOL003/2.5.1/master/src/SOL003/VNFLifecycleManagement


Unlike the existing SO VNF/VF-Module workflows, the new ETSI VNF-level workflows will NOT interact with OpenStack directly. The 
workflows will delegate the VNF LCM requests to VNFM Adapter, and VNFM Adapter will delegate the requests to VNFM further. Then, 
VNFM will interact with VIM directly. In Dublin release, the direct mode of resource management will be supported as depicted above.

SOL001/SOL004 Standard Conformance
VNF Package

A VNF Package is a compressed file that contains the following:
One VNF descriptor (VNFD)
One or more Software Image files
Zero or more manifest files
Other files

Package structure is SOL004 2.5.1 compliant.
Note: SDC in Dublin has limitations and restrictions on SOL004 support:

SDC does not allow custom directories such as Images, Scripts, Licenses and HOT in the root directory.
SDC requires MainServiceTemplate.mf and MainServiceTemplate.yaml in the root directory
As a result, in Dublin, the vendor VNF package should follow SDC onboarding rules. These SDC restrictions and 
limitations plan to be removed in the El Alto release. 

Cloud Service Archive (CSAR) format
It is a packaging construct defined in SOL004 2.5.1, identified by a .csar suffix on the package file. In SOL004, there are two 
package options; one with TOSCA-Metadata, one without TOSCA-Metadata directories: 

The CSAR file does not contain TOSCA-Metadata directory, the descriptor yaml file is in the root directory of the 
CSAR.
The CSAR file contains TOSCA-Metadata directory, the TOSCA meta file in this directory contains the location and 
name of the descriptor file denoted by Entry-Definitions

In ONAP, the second option (with TOSCA-Metadata) is supported.
Note: in SDC El Alto, if the VNF package with certificate and/or signature will be packaged as a zip file. The csar format 
continues to be used for the package without certificate and/or signature. The zip file without certificate and/or signature will be 
considered as an HEAT-based package.

VNFD
It is specified by the SOL001 2.5.1.
Note 1: that the input and get_input function would be used by a TOSCA orchestrator at run time to access the selected input 
parameter. If the deployment is not done by a TOSCA orchestrator, the inputs and get_input function may not be needed. The 
VNFD design should follow the vendor SVNFM orchestration capabilities. 
Note 2: in Dublin, SDC will convert SOL001 VNFD to SDC AID DM, but it is not complete. More mapping design discussions 
are necessary in El Alto.

VNFM Adapter conforms to the SOL001/SOL004 standards of specification and package 
management and SOL003 lifecycle operations.

Note: in Dublin, SDC does not support SOL004 VNF package yet. SO and SO VNFM Adapter design around SOL004 handling is 
simplified or deferred to the El Alto release.

Design Scope for Dublin

Epic and Use Stories
VNFM Adapter Design
SOL001/SOL004 Support & Design
SO BPMN Infra & VNFM Adapter Run-time Scenario
SOL003 API Support



SO VNFM Adapter SOL003 API Support Design
VNFM Adapter VNF Package Management (Not part of Dublin)
SDNC Assignment Management
VNFM Adapter Locating SVNFM
VNF Life-cycle Granting
VNFM Adapter Homing Decision for VNF Granting (TBD)
SVNFM Simulator

Epic

Epic Feature Description

 

 - SO-1508 ETSI Alignment - SO 
SOL003 plugin support to connect to 

 external VNFMs CLOSED

ETSI Alignment - SO SOL003 
plugin support to connect to 
external VNFMs

ETSI Alignment - SO SOL003 plugin support to connect to an 
external VNFM. 

Leverage ETSI standards for VNF LCM in SO

Build SO VNFM Adapter

Use SOL003 APIs (2.5.1) for VNF LCM

Support operations such as create, instantiate, 
grant, query, terminate/delete, LCN subscription, 
LCN and VNF package management

Support of Delete VNF is a stretch goal in Dublin
Enhance SO BPMN workflows & recipes

VNF-level and VF-Module workflows, leveraging 
VNFM Adapter 

Passing VNF LCM requests to VNFM using VNFM 
Adapter

 Provide VNF package management for VNFM (Stretch 
Goal; under investigation)

User Stories

User Stories Feature Description

 

 - SO-1538 Integration Test for SO 
VNFM Adapter - Perform the functional 
test to validate VNFM Adapter NBI and 

 SOL003-based SBI CLOSED

Create the Functional 
test case to validate 
VNFM Adapter NBI and 
SOL003-based SBI

Validate VNFM Adapter NBI and SOL003-based SBI

 

 -  SO-1618 SVNFM Simulator
CLOSED

SVNFM Simulator For integration testing in ONAP, vendor-neutral SVNFM is needed, 

This SVNFM Simulator supports SOL003-based interfaces and 
message exchange sequences for interface verification.

vCPE VNF packages plan to be used for this validation testing.

 

 - SO-1619 Create SO VNFM 
Adapter Northbound Interface using 

 Swagger CLOSED

Create SO VNFM 
Adapter Northbound 
Interface using Swagger

Create SO VNFM Adapter Northbound Interface using Swagger

 

 -  SO-1620 Create Shell Adapter
CLOSED

Create Shell Adapter
Deployable VNFM Adapter container in ONAP (including docker 
image and helm chart)
Register VNFM Adapter with MSB

Create placeholder 
implementation for 
create VNF (without 

Create Override YAML in OOM project

https://jira.onap.org/browse/SO-1508
https://jira.onap.org/browse/SO-1538
https://jira.onap.org/browse/SO-1618
https://jira.onap.org/browse/SO-1619
https://jira.onap.org/browse/SO-1620


 

 - SO-1621 Create placeholder 
implementation for create VNF (without 

 SVNFM interaction) CLOSED

SVNFM interaction) Define Create/instantiate VNF interface which log the request in 
SVNFM adapter
Create request to VNFM adapter for VNF creation

Note: manual database update to trigger new BB flow and no pre-load

 

 - SO-1622 Check for existing VNF 

 (with SVNFM Interaction) CLOSED

Check for existing VNF 
(with SVNFM 
Interaction)

Update Override YAML to add A&AI basic auth and URL
Generate 003 APIs using swagger
Get the generic-vnf from A&AI
Select a VNFM from A&AI (if not already associated with a VNFM)
Check for existing VNF

 

 - SO-1623 Handle Create VNF 

 request in VNFM adapter CLOSED

Handle Create VNF 
request in VNFM 
adapter

Get VNFD Id from original csar
Send create request to the SVNFM
Set self-link based on result of create operation

 

 - SO-1624 Instantiate VNF (with 

 SVNFM Interaction) CLOSED

Instantiate VNF (with 
SVNFM Interaction) With pre-load data from SDNC based on model name and VNF-

type
Get the flavor Id from the CSAR
Get the VIM info from A&AI
Send request to SVNFM
Update generic-vnf orchestration status A&AI

 

 - SO-1625 Handle Grant Request 

 (Without Homing/OOF) CLOSED

Handle Grant Request 
(Without Homing/OOF)

Reply to grant request based on given VIM info in request

 

 -  SO-1626 Monitor Node Status
CLOSED

Monitor Job Status Monitor Job Status

Adapter Store and return job Id ( job ids stored in cache)
Introduce Job monitoring handling in flow
Handle time out for Job monitoring ( hard coded/configure in yaml 
timeout)
Identify the VNFM and operation Id for the job
Send get operation status request to VNFM
Return status

 

 - SO-1627 Create relationship 
 between esr-vnfm and generic-vnf in AAI

CLOSED

Create relationship 
between esr-vnfm and 
generic-vnf in AAI

Create relationship between esr-vnfm and generic-vnf in AAI

add a rule to AAI DBEdgeRule ESR

{ "from": "generic-vnf", "to": "esr-vnfm", "label": "tosca.relationships.
DependsOn", "direction": "OUT", "multiplicity": "MANY2ONE", "contains-
other-v": "NONE", "delete-other-v": "NONE", "prevent-delete": "NONE", 
"default": "true", "description":"" }

read the relationship in the SO VNFM Adapter Adapter

 

 - SO-1628 Handle Notification 

 Subscription CLOSED

Handle Notification 
Subscription

Notification Subscription

Update generic-vnf status
Create vServers
Set OAM IP address - source of which needs to be configurable
Update Orch status in A&AI to completed

 

 - SO-1629 Notification Handling - 

 Instantiate CLOSED

Notification Handling - 
Instantiate

Notification Handling - Instantiate

Update generic-vnf status
Create vServers
Set OAM IP address - source of which needs to be configurable
Update Orch status in A&AI to completed

 

 -  SO-1630 Monitor Job Status-Create
CLOSED

Monitor Node Status Monitor Node Status

Introduce Node monitoring handling in flow which periodically 
check orchestration status in A&AI
Handle time out for node status handling (hard coded/configurable 
timeout)

https://jira.onap.org/browse/SO-1621
https://jira.onap.org/browse/SO-1622
https://jira.onap.org/browse/SO-1623
https://jira.onap.org/browse/SO-1624
https://jira.onap.org/browse/SO-1625
https://jira.onap.org/browse/SO-1626
https://jira.onap.org/browse/SO-1627
https://jira.onap.org/browse/SO-1628
https://jira.onap.org/browse/SO-1629
https://jira.onap.org/browse/SO-1630


 

 - SO-1631 VNFM Simulator 

 Enhancement and Refactoring CLOSED

Handling Homing in 
Flow

Handling Homing in Flow

 

 - SO-1632 Handle VNF delete and 
 termination (without SVNFM integration)

CLOSED

Handle VNF delete and 
termination (without 
SVNFM integration)

Deleting/Terminating VNF (without SVNFM integration)

Define Terminate/Delete VNF interface in VNFM adapter
Update or introduce new building block which invoke VNFM 
adapter for termination

 

 - SO-1633 Terminate VNF (with 

 SVNFM interaction) CLOSED

Terminate VNF (with 
SVNFM interaction)

Terminate VNF (with SVNFM interaction)

Identify the SVNFM to use from A&AI
Send terminate request to SVNFM
Send delete request to SVNFM
Return a job Id
Check termination job status in flow

 

 - SO-1634 Notification Handling - 

 Terminate CLOSED

Notification Handling - 
Terminate

Notification Handling - Terminate

Delete vServers
Update generic-vnf orchestration status
Check node termination status in flow

 

 - SO-1635 Preload using 
 user_param (without UI changes)

CLOSED

Remove SDNC pre-
load and introduce 
user_param handling

Remove SDNC pre-load and introduce user_param handling

 

 - SO-1636 SOL003 Adapter - VNF 

 Instances Query Support CLOSED

Handle Failure case 
where notification is 
missed (Query VNF)

Handle Failure case where notification is missed (Query VNF)

VNFM Adapter expose interface to get of VNF info
Flow use VNF info to check status at timeout

 

 - SO-1637 OAM IP address handling 

 for generic-vnf CLOSED

Spike - investigate 
OAM IP address 
handling for generic-vnf

Investigate OAM IP Address handling for generic-vnf

Testing

Ericsson Internal Test:
A vendor provides their VNF Package and SVNFM for managing the vendor-specific VNF package. 
For the SO VNFM Adapter NBI and SOL003-SBI interface validation, Ericsson SVNFM is used for the internal testing

Integration Test:
For the integration testing, generic/dummy VNF package and VNFM simulator are provided.
The generic/dummy VNF package is used to extract SOL001 VNFD parameters for SOL003-based API parameters, such as 
descriptor_id, flavor, etc. 
VNFM simulator is a vendor-neutral SOL003-compliant VNFM, which supports SOL003 responses and message exchanges.
vCPE VNF packages would be used for this integration testing. 

VNFM Adapter Sub-components

https://jira.onap.org/browse/SO-1631
https://jira.onap.org/browse/SO-1632
https://jira.onap.org/browse/SO-1633
https://jira.onap.org/browse/SO-1634
https://jira.onap.org/browse/SO-1635
https://jira.onap.org/browse/SO-1636
https://jira.onap.org/browse/SO-1637


SO VNFM Adapter component is a sub component of SO; utilizing docker image and container managed.
North Bound Interface (NBI)

RESTful APIs that support createVnf (invokes both createVnf and instantiateVnf), grantVnf, TerminateVnf/DeleteVnf
Its APIs are SO specific; i.e., not SOL003-based ones; for the NB API details, see the   page.SO VNFM Adapter APIs

Business Logic layer
It is invoked by the NBI and provides business logic for createVnf, instantiateVnf, terminateVnf/DeleteVnf
SDNC and A&AI access to collect assignment and VimConnectionInfo
Accesses SdcPackageProvider for getting SOL004 package(s) and parameters
SdcPackageProvider

Supports SOL001/SOL004 package management
Provides getPackage, getVnfdId, getFlavorId, getVnfNodeProperty
Provides getPackage(s), getVnfd, getArtifactFile for SVNFM
Uses SDC Tosca Parser

GrantManager
Provides requestGrantForInstantiate REST API for SVNFM
Invokes OOF for homing decision; HPA support, and/or non-OOF decision

SOL003Lcn APIs
Supports VnfIdentifierCreationNotification, VnfIdentifierDeletionNotification, 
VnfLcmOperationOccurrenceNotification

SOL003 Communication Layer
It is a thin REST client layer, which sends SOL003-compliant requests to SVNFMs and receives responses
/notifications from SVNFM.
For Grant, it provides the Grant REST endpoint for SVNFM
For the SOL003 Southbound API details, see the   page. SO VNFM Adapter APIs

SOL001/SOL004 Support & Design

SDC VNF SOL001/SOL004 Support
VNFM Adapter depends on the following SDC capabilities:

SOL004-based VNF CSAR package onboarding, including storing the original VNF package in SDC output.
Manual onboarding of VNF package thru SDC UI.
Mapping VNFD (SOL001) to SDC AID DM, including VF-Module deduction based on ScaleAspect + Delta
SDC TOSCA Parser for SDC/ONAP Internal model
TOSCA Parser for SOL001
VNF SDK support of VNF package verification

SDC support scope for VNF SOL001/SOL004 is under discussion (Ericsson, Nokia contribution)
In Dublin, SDC does not support SOL004 VNF package fully. 

The SDC package structure support is not flexible and requires proprietary convention. 
SDC limitations and restrictions have been identified and under discussion for the El Alto release.

CSAR Import, Store and Retrieve Sequences 
SDC stores the original vendor VNF package along with the transformed ONAP-compliant package.

Note: this will not supported SDC Dublin.
SO uses SDC-transformed CSAR packages and VNFM Adapter uses the original Vendor CSAR package.

Note: since SDC Dublin does not support the original vendor CSAR package, SO VNFM Adapter will retrieve VNFDs from SDC.
For that reason, the following steps 1, 2, 3 and 4 have been simplified and adjusted.

In Dublin, SVNFM needs to onboard its VNF packages.

https://wiki.onap.org/display/DW/SO+VNFM+Adapter+APIs
https://wiki.onap.org/display/DW/SO+VNFM+Adapter+APIs
https://wiki.onap.org/display/DW/SO+VNFM+Adapter+APIs


1.  
a.  

b.  
c.  

2.  
3.  
4.  

a.  

b.  
c.  

Design 

Note 1: the following design will be completed in the El Alto release. For Dublin, the steps 2 and 3 are not used, and the step 4 will be 
used to retrieve VNFDs from SDC

Note 2: the step 1 is not important for SO VNFM Adapter in Dublin since the Adapter will get VNFD from SDC directly. 

SO SDC Controller gets a SOL004 VNF package with an SOL001 VNFD (for El Alto)
SDC could generate two output: one ONAP-compliant CSAR and one original CSAR (maybe the first file includes the second 
one)
SO will use the ONAP-compliant CSAR
VNFM Adapter will use original CSAR

SO SDC Controller stores a VNF CSAR file reference to the SO Catalog DB (e.g., TOSCA_CSAR database table) - for El Alto
VNFM Adapter gets a CSAR package URL from the SO TOSCA_CSAR database table - for El Alto
VNFM Adapter gets an original CSAR package file from the SDC repository

It is assumed that the Adapter retrieves the original vendor provided CSAR package from SDC repository directory before it 
passes the package to SVNFM, where SVNFM handles the original CSAR. For that, SDC copy the full original package.
There would be two CSAR packages for a service: one original package, one SDC transformed package.
VNFM Adapter passes the original CSAR package to SVNFM because the SVNFM is outside of ONAP and is designed to 
handle the vendor CSAR package.

Note: SO future release could consider SOL001/SOL004 internal representation in its Catalog DB, or using the Run-time Catalog DB

VNFM Adapter VNF Flow Design (Run-time Scenarios)
The following diagram depicts VNF flows thru SO VNFM Adapter.



1.  
a.  

b.  
2.  

a.  
b.  
c.  

3.  
a.  
b.  

4.  
5.  

a.  
b.  

6.  
a.  
b.  

7.  

1.  

2.  

3.  

a.  

b.  
c.  

SO BPMN Service workflows dispatch new resource-level workflows based on VNF request parameters (e.g., type, others).
Once a Service workflow chooses a new workflow path for VNFM Adapter, the subsequent requests for the same VNF will 
follow the new path.
an association between VNF and VNFM will be made in A&AI.

SO BPMN VNF-level resource workflows handle:
Assign VNF to SDNC
Retrieve the VNF Assignment from SDNC
Invoke VNFM Adapter Client with required parameters

VNFM Adapter Client manages:
Populate parameter structures based on data from SO workflows
Invoke VNFM Adapter NBI with required parameters

VNFM Adapter gets GenericVNF from A&AI
VNFM Adapter locates the corresponding VNF and VNFM registration info form A&AI (ESR). Two methods are suggested

Current one: based on VNF NF Type and VNFM Type in A&AI
Could use VNFD vnfm_info:type, VNFM registration values: VNFM type, Cloud Region, vendor - logic is being designed

VNFM Adapter gets VimConnectionInfo from A&AI
Queries A&AI based on the cloud region and tenant id
Builds the VimConnectionInfo based on the type, service-url, user-name, password, cloud-domain, etc.

VNFM Adapter uses network assignment (e.g., IP Address) from SO (thru SDNC) and builds the extVirtualLinks and other parameters.

VF-Module Deduction from SOL001 (It is a candidate for the El Alto release)
Note: VF-Module deduction will not be supported in Dublin. ETSI-based scaling will not be supported in Dublin.

There is an assumption that SDC transforms the vendor provided VNF package into ONAP-compliant one; i.e., deducing VF Modules 
based on VNFD ScalingAspects and Delta.
If SDC supports the transformation in Dublin time-frame, the transformed CSAR will be imported to SO, and SO VNF- and VF-Module-
level workflows will manage VNF and VF Module topology towards SDNC with the following changes - Input from Gil Bullard (AT&T)

Today the VNF-level workflow has an embedded per-VF Module loop that a) retrieves the SDNC assignments for that VF 
Module, and then b) sends those VF Module-level assignments down to the VIM (e.g., OpenStack); the loop then moves to 
repeat "a" with the next VF Module. 
The new VNF-level flow will have the following sequences:

an embedded per-VF Module loop that only retrieves the SDNC assignments for each VF Module; because the VIM is 
hidden from SO's sight, beneath the VNFM Adapter/VNFM.
After finishing the loop, the SO workflows will send a structure  to the VNFM Adapter that includes the aggregate 
assignments at the VNF level.
The VNFM Adapter aggregates all the VF-Module level assignments and transforms the assignment data into SOL003 
API parameters before sending them to SVNFM

The VNFM Adapter would need to be able to parse the VNF-level assignments structure received from SO to 
obtain the per-VDUconnection point assignments information and any per-VDU parameter information (e.g., 
hostnames)
In doing so, the VNFM Adapter would need to know to ignore the VF Module groupings of these assignments
Further know how to map the ONAP data structure and parameter names into the ETSI (e.g., VM=VDU, 
VNFC=VNFC, vNIC=vNIC, etc.). Note that the above assumes that in ONAP, as in ETSI, there will be a one-
to-one correspondence between VM/VDU and VNFC.

Assumptions for deducing VF-Module from SOL001 (Gil Bullard's input)

SOL001 concept of Aspect+ScalingDelta combination is one to one with the ONAP concept of VF Module.
SOL001 concept of VDU is one to one with the ONAP concept of A&AI vServer



SOL001 concept of a connection point associated with a VDU corresponds to the ONAP concept of the same name, as does 
the understanding of the meaning of “internal” versus “external” connection point.
ONAP-compliant SOL001 VNF Vendors will be obliged to name their HEAT files using a naming convention that encodes the 
SOL001 Aspect+ScalingDelta names
ONAP-compliant SOL001 VNF Vendors will be obliged to name their SOL001 Aspect+ScalingDelta parameters using a naming 
convention that readily maps to the corresponding HEAT properties.  
In addition, if AT&T has already deployed such a vendor’s VNF into its network, the HEAT naming will remain invariant, and (at 
least) the (AT&T version of that) SOL001 be written to match it.

What to do
ONAP will be extended to incorporate the constructs of Aspect and Scaling Level.  This includes SDC’s, SOs, and A&AI’s 
modeling of these constructs and A&AI's ability to capture and SO’s ability to set/update the "current scaling level" of a VNF for 
a given Aspect. 
If ETSI in their SOL001 VNFD had defined a "ScalingDelta" in a straightforward manner, i.e., in terms of the VNFCs that 
comprise it, then it would be very easy to extract VF Module information from the VNFD.  (I would like to see ETSI define 
"ScalingDelta" in this manner, as opposed to the current way they do so. )  However, given that they did not, ONAP SDC would 
need to be extended to derive the VF Module “structure” from the SOL001 document through the algorithm below.  “Structure” 
in this case includes the VDU topology, connection points and associated parameters.  This algorithm will:
Determine the set of Aspects and corresponding VDUs and associated ScalingDeltas (step_deltas) from the SOL001.
Determine the set of ScalingLevels associated with each Aspect and the ScalingDeltas associated with each.
Translate the VDU-centric representation of ScalingDeltas (step_deltas) as per SOL001 to come up with a ScalingDelta-centric 
representation that captures the number and type of VDUs associated with that ScalingDelta across the various VDU types.
Create a VF Module object that corresponds to each ScalingDelta-centric representation of a ScalingDelta calculated above.
Fill in the details of the VF Module object based on the SOL001 data to represent the VDU connection points, associated 
Networks (internal or external), and associated Parameters.
Determine if there is an the artifact in the SOL004 package that is a HOT YAML whose file name corresponds (through a VNF 
vendor obligatory naming convention) to the Aspect+ScalingDelta from which this VF Module object was derived.  If so, 
associate that HOT file with the VF Module.
Name the VF Module based on a naming convention to capture the Aspect+ScalingDelta names
Determine and capture the mapping from each Aspect + ScalingLevel model for the VNF to the corresponding VF Module.
Given a desired state Aspect+ScalingLevel, will be able to calculate (from the SDC distributed mapping of Aspect+ScalingLevel 
to VF Module along with the current Scaling Level for this Aspect as per A&AI) the (ordered set of) VF Module(s) needed to 
take that VNF from the “current scaling level” to the desired level for that Aspect.
Note:  As an aside, SDC enhancements are being discussed. It is not clear if the SDC changes will be available in the Dublin 
time frame. some “stubbing off” SDC with a simulator could be suggested to at least prove in the run-time aspects of the 
solution.

SO BPMN VNF Workflow
New VNF-level Building Block workflows will be created.
Create and Instantiate VNF workflow (EtsiVnfInstantiateBB.bpmn)

Delete VNF workflow (EtsiVNFDeleteBB.bpmn)

SO BPMN VF-Module Workflow (not for Dublin)
For ETSI-based VNF package, VF-Module level workflows will NOT be used. 
SO VNFM Adapter will interface with SVNFM at the VNF level.

VNFM Adapter Client 
SO Workflows (Building Blocks) will invoke Java-based VNFM Adapter Client. 
This Adapter client will invoke the SO VNFM Adapter NBI thru SO proprietary interfaces.

SDNC Assignment

Even though SO Building Blocks are used for the SO VNFM Adapter, assignment data will be pre-loaded into SDNC for the Dublin 
release.
In El Alto release, preload data could be replaced with SO request data (TBD)
Possible preload data structure. The additionalParams and extVirtualLinks data will be preloaded to SDNC, and the SO VNFM Adapter 
will retrieve the data from SDNC.



{  
   "additionalParams ":"{\"param_1\": \"value_1\",\"param_2\": \"value_2\",\"param_3\": \"value_3\"}",
   "extVirtualLinks":"[{\"id\": \"vlaue\",\"resourceId\": \"value\",\"extCps\": [{\"cpdId\": \"cpdId_value\",\"fixedAddresses\": [{\"
fixedAddresses\": {\"macAddress\": [\"macAddress_1\", \"macAddress_2\"]}}]}]}]"
}

VNFM Simulator

SVNFM is provided by its vendor, which is vendor-specific by nature. For ONAP integration testing for SO VNFM Adapter, a generic VNFM 
Simulator is needed. This generic VNFM Simulator will support SOL003-compliant interfaces. 

In Dublin, the Simulator will support Crate, Instantiate, Terminate and Delete VNF operations and Grant request/response handling. 
Simulated mock-up request and response data will be exchanged.

VNFM Adapter Locating SVNFM

VNFM Adapter locates a proper SVNFM based on VNF NF Type/VNFD  and VNFM registration
Two methods are suggested as follows, and one of them will be chosen.



Design

Current method (Green Dots)
VnfLCM::locateVnfm(GenericVnf vnf)
Get a vnfm list from AAI ESR
Find a matched Vnfm, where vnfmInfo.getType() == vnf.getNfType

New method (Orange Dots)
Under development (TBD)

VNFM Adapter VNF Package Management (It is deferred to the next release, e.g, El Alto)
In Dublin, VNF packages will be onboarded into SVNFM separately/manually. The SVNFM will onboard SOL004 VNF package in their 
own way.
In the future release (e.g., El Alto), VNFM Adapter will support VNF package management for SVNFM.

VNF Package Management Execution Flow
VNFM Adapter supports VNF Package Management Interface

Accepts the "Get VNF packages" request and returns "200 OK" with VnfPkgInfo[]
Accepts the "Get VNFD" request and returns "200 OK" with Vnfd
Accepts the "Get VNF artifact" request and returns "200 OK" with Artifact file

Design
Getting multiple VNF packages

VNFM queries information about multiple VNF packages  (VNFM  VNFM Adapter); GET .../vnf_packages
VNFM Adapter returns a "200 OK" response and includes in the payload body zero or more data structures of 
type "VnfPkgInfo" (VNFM Adapter  VNFM); 200 OK (VnfPkgInfo[])



Getting a particular VNF Package
VNFM sends a GET request to the "Individual VNF package" resource (VNFM  VNFM Adapter); GET ...
/vnf_packages/{vnfPkgId}
VNFM Adapter returns a "200 OK" response and includes in the payload body a data structure of type 
"VnfPkgInfo" (VNFM Adapter  VNFM); 200 OK (VnfPkgInfo)

Reading the VNFD of an onboarded VNF Package
VNFM sends a GET request to the "VNFD in an individual VNF package" resource (VNFM  VNFM Adapter); 
GET .../vnf_packages/{vnfPkgId}/vnfd
VNFM Adapter returns a "200 OK" response and includes a copy of the VNFD from the VNF package in the 
payload body (VNFM Adapter  VNFM); 200 OK (Vnfd)

Fetching a VNF package artifact
VNFM sends a GET request to the "Individual VNF package artifact" resource (VNFM  VNFM Adapter); GET 
.../vnf_packages/{vnfPkgId}/artifacts/{artifactPath}
VNFM Adapter returns a "200 OK" response, and includes a copy of the applicable artifact file from the VNF 
package in the payload body (VNFM Adapter  VNFM); 200 OK (artifact file)

Note: Package management subscription and notification are not consider at 
this time, future consideration.

***** Design *****
SOL003 Lifecycle Management (LCM) Support and Design

SOL003 Interfaces between VNFM Adapter (Client) and SVNFM (Provider)

           Note: for the interface details, see the VNFM Adapter APIs, 

SO VNFM Adapter APIs

.

Create VNF
HTTP Method Type: POST
VNFM Endpoint: /vnf_instances/
Request Payload: CreateVnfRequest
Response Header: 201 success
Response Body: VnfInstance

Design
VNFM Adapter sends a POST request to the "VNF Instances" resource including in the payload body a data 
structure of type "CreateVnfRequest" (VNFM Adapter  VNFM); POST ../vnf_instances (CreateVnfRequest)
VNFM creates a new VNF instance resource in NOT_INSTANTIATED state, and the associated VNF 
instance identifier (VNFM  VNFM Adapter); 
VNFM returns a 201 Created response containing a representation of the VNF Instance resource just created 
by the VNFM, and provides the URI of the newly-created resource in the "Location" HTTP header (VNFM  
VNFM Adapter); 202 Created (VnfInstnace)
VNFM sends a VNF Identifier Creation Notification to the VNFM Adapter to indicate the creation of the VNF 
instance resource and the associated VNF instance identifier (VNFM  VNFM Adapter); Send 
VnfIdentifierCreationNotification
Parameters and data source

Parameters Required? Data Source Note

vnfdId Required descriptor_id from VNFD

vnfInstanceName Optional User Input

vnfInstanceDescription Optional User Input

https://wiki.onap.org/display/DW/SO+VNFM+Adapter+APIs


Instantiate VNF
HTTP Method Type: POST
VNFM Endpoint: /vnf_instances/{vnfInstanceId}/instantiate
Request Payload: InstantiateVNFRequest
Response Header: 202 success
Response Body: not applicable

Design
VNFM Adapter sends a POST request to the Task resource that represents the lifecycle operation to be 
executed on the VNF instance, and includes in the payload body a data structure of type 
InstantiateVNFRequest (VNFM Adapter  VNFM); POST ../vnf_instances/{vnfInstanceId}/instantiate
VNFM Creates a "VNF LCM operation occurrence" resource for the request (VNFM  VNFM Adapter)
VNFM returns a "202 Accepted" response with an empty payload body and a "Location" HTTP header that 
points to the new "VNF LCM operation occurrence" resource (VNFM  VNFM Adapter); .../vnf_lcm_op_occs/
{vnfLcmOpOccId}
VNFM sends to the VNFM Adapter a VNF lifecycle management operation occurrence notification to indicate 
the start of the lifecycle management operation occurrence with the "STARTING" state
VNFM and VNFM Adapter exchange granting information (see Granting section)
VNFM sends to the VNFM Adapter a VNF lifecycle management operation occurrence notification to indicate 
that the VNF LCM operation occurrence enters the "PROCESSING" state
VNFM Adapter polls the "VNF LCM operation occurrence" resource to obtain information about the ongoing 
operation by sending a GET request to the resource that represents the VNF LCM operation occurrence.
VNFM returns to the VNFM Adapter information of the operation, such as the operation status, by providing in 
the payload body a data structure of type "VnfLcmOpOcc"
VNFM has finished the operation <<Operation>>
VNFM sends a VNF lifecycle management operation occurrence notification to VNFM Adapter to indicate the 
completion of the lifecycle management operation occurrence with the success state "COMPLETED"
Parameters and data source

Parameter Required? Data 
Source

Note

flavorId Optional From 
user input 
or from 
the VNFD

This parameter is optional for NBI but it is mandatory for southbound. The 
value from the user; otherwise it takes the default value from VNFD

instantiationL
evelId

Optional From 
VNFD

extVirtualLinks Optional From 
preload 
data or 
user input

The user input requires UI enhancement - See below for design proposal 
If the external connection point ip_address_assignment is set to false, 
extVirtualLink is not necessary since the ip address is set by VIM 
dynamically.



extManagedV
irtualLinks

Optional from user 
input

Externally-managed internal VL; Not supported in Dublin

vimConnectio
nInfo

Optional From AAI In Dublin, the direct resource mode is supported, that means all the VIM 
resources are created directly by VNFM

localizationLa
nguage

Optional Not supported in Dublin

additonalPar
ams

Optional From 
VNFD

It is a mechanism to pass vendor-specific parameters

Population of User Inputs for SOL003 Instantiation. Two options are discussed and the Option #1 is chosen 
for Dublin for simplicity. It will be revisited for the El Alto release. 

Option #1. Preload configuration solution (it would be an option for the Dublin release)
For the VNFD, pre-configure the mapping between the external virtual links and the ip 
addresses
VNFM Adapter retrieves the mapping from preload data and fill up the extVirtualLink 
parameters based on the mapping

Option #2: model-driven user data population from UI (which is attached to VID) - deferred to the 
.next release

The external virtual links user input is shown for illustration purposes. 
VNFD does not define external virtual links, but it lists the external virtual links as 
requirements for the VNF.

If the connection point ip_address_assignment is set to false, no extVirtualLinks ip 
address assignment is necessary.
In this case, VIM will assign IP addresses dynamically.
This could be an option for the Dublin release for simplifying the solution.



If the connection point ip_address_assignment is set to true, set extVirtualLink ip address 
assignment with configuration data from the user input or a preload file.

UI solution (build an UI configuration page and invoke it from VID; it would be an 
option for the post Dublin release): Impact on VID (open issue)
Parse VNFD and extract a list of external virtual links
Map the external virtual links to the corresponding connection points, and read 
ip_address_assignment and number_of_ip_address value
Render the external virtual links
For each external virtual link, render the ip_address_assignment entry fields 
based on the number_of_ip_address value
User configures the mapping and the UI stores the mapping in the database
VNFM Adapter retrieves the mapping from database and fill up the extVirtualLink 
parameters based the mapping
UI Example:

VNFM and GenericVNF relationship

Trace which VNFM instance managed which VNF instance, the following rule will be added to A&AI DB Edge 
(DbEdgeRules_esr_v15.json, DbEdgeRules_esr_v16.json).

{
"from": "generic-vnf",



1.  
2.  
3.  

i.  
ii.  

iii.  
iv.  

v.  

"to": "esr-vnfm",
"label": "tosca.relationships.DependsOn",
"direction": "OUT",
"multiplicity": "MANY2ONE",
"contains-other-v": "NONE",
"delete-other-v": "NONE",
"prevent-delete": "NONE",
"default": "true",
"description":""
}

SO VNFM Adapter will update the relationship between generic-vnf and esr-vnfm based on the rule.

Query VNF Instances (deferred to El Alto)
HTTP Method Type: GET
VNFM Endpoint: /vnf_instances  (for multiple VNFs), /vnf_instances/{vnfInstanceId}  (for single VNF)
Request Payload: not applicable
Response Header: 200 success
Response Body: VnfInstance[] (for multiple VNFs), VnfInstance (for single VNF) 

Design
If the VNFM Adapter intends to query all VNF instances, it sends a GET request to the "VNF instances" 
resource
The VNFM returns a "200 OK" response to the VNFM Adapter, and includes zero or more data structures of 
type "VnfInstance" in the payload body
If the VNFM Adapter intends to read information about a particular VNF instance, it sends a GET request to 
the "Individual VNF instance" resource, addressed by the appropriate VNF instance identifier in its resource 
URI
The VNFM returns a "200 OK" response to the VNFM Adapter, and includes one data structure of type 
"VnfInstance" in the payload body

SOL003 Interfaces between SVNFM (Client) and VNFM Adapter (Provider)

Grant VNF Request

HTTP Method Type: POST
VNFM Endpoint: /grants
Request Payload: GrantRequest
Response Header: 201 success
Response Body: not applicable

VNF Life-cycle Granting

The purpose of the grant request is to have the VNFM’s resource request authorized by VNFM Adapter/SO 
and to get advice on where to allocate resources such as virtual machines based upon capacity.

Grant requests are also useful to ensure that all resources (capacity, quota, flavors, SRTs, etc.) required for 
successful VNF deployment are available.
There are two Grant Response modes, synchronous and asynchronous. Synchronous response mode will 

.be supported for Dublin

Synchronous Mode
VNFM sends a POST request to the Grant resource with a “GrantRequest” in the body
VNFM Adapter with SO makes the granting decision
VNFM Adapter with SO returns to VNFM a “201 Created” response with a “Grant” data structure in 
the body

Asynchronous Mode

VNFM sends a POST request to the Grant resource with a “GrantRequest” in the body
VNFM Adapter with SO returns to VNFM a “202 Accepted” response with an empty body, and a 
“Location” header indicates a callback URL
VNFM Adapter with SO makes the granting decision
VNFM keeps trying to obtain the grant by sending a GET request to VNFM Adapter until a “200 OK” 
response with a “grant” data in the body
VNFM Adapter finishes the granting process and returns a “200 OK” response with a “Grant” data in 
the body



VNFM Adapter VNF Granting

In Dublin, the homing data will be collected during the service decomposition procedures in SO workflows. 
The SO VNFM Adapter will receive the homing data from the SO workflows. 
Some models do not have homing models and policies; i.e., use of OOF is optional. In that case, the SO 
VNFM Adapter will make a gran decision based on VIM registration, cloud region. 
The following concept is based on the current VFC granting mechanism. In the Dublin, the mechanism is not 
used.



1.  
2.  
3.  
4.  

5.  

VNFM Adapter sends out homing requests to OOF (OSDF) containing resource info
OOF (OSDF) pulls all the related homing constraints from Policy
OOF (HAS) checks AAI database to pull region (flavor) information
OOF (HAS) communicates with Multi-Cloud to check cloud capacity (vims which fulfill the 
requirements)
OOF (OSDF) returns homing allocation solution to VNFM Adapter

OOF collects information as following:
Service and Resource Info, from: AAI
HPA Flavors/Capabilities/Capacity Info, from: AAI
Policy Models (Homing, PCI) from: Policy
Infrastructure Metrics Info (capacity), from: MultiCloud
Cloud Agnostic Intent Info, from: MultiCloud
PCI configuration data (not yet a part of SDC model)

Terminate VNF
HTTP Method Type: POST
VNFM Endpoint: /vnf_instances/{vnfInstanceId}/terminate
Request Payload: TerminateVnfRequest
Response Header: 202 success
Response Body: not applicable
Design

VNF precondition = INSTANTIATED state
After the operation, VNF state = NOT_INSTANTIATED 
VNFM Adapter sends a POST request to the Task resource that represents the lifecycle operation to be 
executed on the VNF instance, and includes in the payload body a data structure of type 
TerminateVNFRequest (VNFM Adapter  VNFM); POST ../vnf_instances/{vnfInstanceId}/terminate
VNFM Creates a "VNF LCM operation occurrence" resource for the request (VNFM  VNFM Adapter)
VNFM returns a "202 Accepted" response with an empty payload body and a "Location" HTTP header that 
points to the new "VNF LCM operation occurrence" resource (VNFM  VNFM Adapter); .../vnf_lcm_op_occs/
{vnfLcmOpOccId}
VNFM sends to the VNFM Adapter a VNF lifecycle management operation occurrence notification to indicate 
the start of the lifecycle management operation occurrence with the "STARTING" state
VNFM and VNFM Adapter exchange granting information (see Granting section)
VNFM sends to the VNFM Adapter a VNF lifecycle management operation occurrence notification to indicate 
that the VNF LCM operation occurrence enters the "PROCESSING" state
VNFM Adapter polls the "VNF LCM operation occurrence" resource to obtain information about the ongoing 
operation by sending a GET request to the resource that represents the VNF LCM operation occurrence.
VNFM returns to the VNFM Adapter information of the operation, such as the operation status, by providing in 
the payload body a data structure of type "VnfLcmOpOcc"
VNFM has finished the operation <<Operation>>
VNFM sends a VNF lifecycle management operation occurrence notification to VNFM Adapter to indicate the 
completion of the lifecycle management operation occurrence with the success state "COMPLETED"
Note: its communication exchange pattern is the same as the Instantiate VNF.
Parameters and Data source



Parameter Required? Data 
Source

Note

terminationType Yes from user 
input

gracefulTerminationTi
meout

Optional from user 
input

This attribute is only applicable in case of graceful termination. 
The unit is seconds

additionalParams Option from VNFD

Delete VNF (Stretch Goal in Dublin)
HTTP Method Type: DELETE
VNFM Endpoint: /vnf_instances/{vnfInstanceId}
Request Payload: not applicable
Response Header: 204 success
Response Body: not applicable

Design

VNF precondition = NOT_INSTANTIATED
After the operation, VNF resource has been removed from the list of VNF instance resources
VNFM Adapter sends a DELETE request to the "Individual VNF Instance" resource.
The VNFM deletes the VNF instance resource and the associated VNF instance identifier.
The VNFM returns a "204 No Content" response with an empty payload body.
The VNFM sends to the VNFM Adapter a VnfIdentifierDeletionNotification to indicate the deletion of the VNF 
instance resource and the associated VNF instance identifier.
If the VNF instance is not in NOT_INSTANTIATED state, the VNFM rejects the deletion request.



More SVFM SOL003 Interfaces for Future Release

Scale VNF

HTTP Method Type: POST
VNFM Endpoint: /vnf_instances/{vnfInstanceId}/scale
Request Payload: ScaleVnfRequest
Response Header: 202 accepted
Response Body: not applicable

Scale to Level Vnf
HTTP Method Type: POST
VNFM Endpoint: /vnf_instances/{vnfInstanceId}/scale_to_level
Request Payload: ScaleVnfToLevelRequest
Response Header: 202 accepted
Response Body: not applicable

Delete VNF
HTTP Method Type: DELETE
VNFM Endpoint: /vnf_instances/{vnfInstanceId}
Request Payload: not applicable
Response Header: 204 success
Response Body: not applicable

Operate VNF
HTTP Method Type: POST
VNFM Endpoint: /vnf_instances/{vnfInstanceId}/operate
Request Payload: OperateVnfRequest
Response Header: 202 success
Response Body: not applicable

Impacted ONAP components

SO 
SO Catalog DB for SOL001/SOL004 support
BPMN Workflows and Recipes
VNFM Adapter

SDC 
Support SOL001/SOL004

Leave the current TOSCA SDC AID DM mapping as is
store the original vendor-provided VNF package

VF Module deduction based on SOL001 (out of scope from Dublin)
SDNC

VNF-level Network Assignment, instead of VF-Module
A&AI

VNF-level Inventory Update
VNFM location

Policy (Stretch goal) - out of scope from Dublin
Scale-Out support for ETSI-based scaling



Modeling
Support SOL001/SOL004
ETSI vs. ONAP-compliant VNFD (out of scope from Dublin)

VID
External Virtual Link Configuration UI to map External CPs and Virtual Links such as IP Address (out of scope from 
Dublin)

Open Items

VNF Application Configuration thru VNFM Adapter and VNFM is under discussion  (out of scope from Dublin)

Architecture subcommittee is defining orchestration scenarios for application configuration
Better mechanism for VNFM Adapter to locate VNFMs (two methods are suggested)

How do we identify which VNFM to use?
Modelling for VNF and VF Modules; mapping between VF Modules and VNF (out of scope from Dublin)

Assigning Network resources to SDNC; do we use preload data?
Continue to support existing non-ETSI SO workflows along with ETSI-based workflows
SOL001/SOL004 SO Representation (for Dublin, the second option was chosen)

Option #1: Enhance SO Catalog Database? 

VNF_Package (vnfdid, vnfm_info, version, vnf_provider, product, vendor, etc.)
VNF_Package_Artifact (child database for VNF_Package, VNFD_URL, SoftwareImage_URL, Additional Files 
etc)

Option #2: Store minimum reference in TOSCA_CSAR database table? This was chosen for Dublin
MultiCloud use (not for Dublin)
SO VNFM Adapter High Availability and error handling are not fully covered.


	SO Plug-in Support for VNFM (SO VNFM Adapter)

